view libinterp/corefcn/schur.cc @ 21966:112b20240c87

move docstrings in C++ files out of C strings and into comments * __contourc__.cc, __dispatch__.cc, __dsearchn__.cc, __ichol__.cc, __ilu__.cc, __lin_interpn__.cc, __luinc__.cc, __magick_read__.cc, __pchip_deriv__.cc, __qp__.cc, balance.cc, besselj.cc, betainc.cc, bitfcns.cc, bsxfun.cc, cellfun.cc, colloc.cc, conv2.cc, daspk.cc, dasrt.cc, dassl.cc, data.cc, debug.cc, defaults.cc, det.cc, dirfns.cc, dlmread.cc, dot.cc, eig.cc, ellipj.cc, error.cc, fft.cc, fft2.cc, fftn.cc, file-io.cc, filter.cc, find.cc, gammainc.cc, gcd.cc, getgrent.cc, getpwent.cc, getrusage.cc, givens.cc, graphics.cc, hash.cc, help.cc, hess.cc, hex2num.cc, input.cc, inv.cc, kron.cc, load-path.cc, load-save.cc, lookup.cc, ls-oct-text.cc, lsode.cc, lu.cc, mappers.cc, matrix_type.cc, max.cc, mgorth.cc, nproc.cc, oct-hist.cc, octave-link.cc, ordschur.cc, pager.cc, pinv.cc, pr-output.cc, profiler.cc, psi.cc, pt-jit.cc, quad.cc, quadcc.cc, qz.cc, rand.cc, rcond.cc, regexp.cc, schur.cc, sighandlers.cc, sparse.cc, spparms.cc, sqrtm.cc, str2double.cc, strfind.cc, strfns.cc, sub2ind.cc, svd.cc, sylvester.cc, symtab.cc, syscalls.cc, sysdep.cc, time.cc, toplev.cc, tril.cc, tsearch.cc, typecast.cc, urlwrite.cc, utils.cc, variables.cc, __delaunayn__.cc, __eigs__.cc, __fltk_uigetfile__.cc, __glpk__.cc, __init_fltk__.cc, __init_gnuplot__.cc, __osmesa_print__.cc, __voronoi__.cc, amd.cc, audiodevinfo.cc, audioread.cc, ccolamd.cc, chol.cc, colamd.cc, convhulln.cc, dmperm.cc, fftw.cc, qr.cc, symbfact.cc, symrcm.cc, ov-base.cc, ov-bool-mat.cc, ov-cell.cc, ov-class.cc, ov-classdef.cc, ov-fcn-handle.cc, ov-fcn-inline.cc, ov-flt-re-mat.cc, ov-int16.cc, ov-int32.cc, ov-int64.cc, ov-int8.cc, ov-java.cc, ov-null-mat.cc, ov-oncleanup.cc, ov-range.cc, ov-re-mat.cc, ov-struct.cc, ov-typeinfo.cc, ov-uint16.cc, ov-uint32.cc, ov-uint64.cc, ov-uint8.cc, ov-usr-fcn.cc, ov.cc, octave.cc, pt-arg-list.cc, pt-binop.cc, pt-eval.cc, pt-mat.cc, lex.ll, oct-parse.in.yy: Docstrings are now comments instead of C strings. * build-aux/mk-opts.pl: Emit docstrings as comments instead of C strings. * DASPK-opts.in, LSODE-opts.in: Don't quote " in docstring fragments. * builtins.h: Include builtin-defun-decls.h unconditionally. * defun.h (DEFUN, DEFUNX, DEFCONSTFUN): Simply emit declaration. (DEFALIAS): Always expand to nothing. * defun-dld.h: No special macro expansions for MAKE_BUILTINS. (DEFUN_DLD): Use FORWARD_DECLARE_FUN. (DEFUNX_DLD): Use FORWARD_DECLARE_FUNX. * defun-int.h: No special macro expansions for MAKE_BUILTINS. (FORWARD_DECLARE_FUN, FORWARD_DECLARE_FUNX): New macros. (DEFINE_FUN_INSTALLER_FUN): If compiling an Octave source file, pass "external-doc" to DEFINE_FUNX_INSTALLER_FUN. (DEFUN_INTERNAL, DEFCONSTFUN_INTERNAL, DEFUNX_INTERNAL, DEFALIAS_INTERNAL): Delete. * common.mk (move_if_change_rule): New macro. (simple_move_if_change_rule): Define using move_if_change_rule. * find-defun-files.sh (DEFUN_PATTERN): Update. Don't transform file name extension to ".df". * libinterp/mk-pkg-add, gendoc.pl: Operate directly on source files. * mkbuiltins: New argument, SRCDIR. Operate directly on source files. * mkdefs: Delete. * libinterp/module.mk (BUILT_SOURCES): Update list to contain only files included in other source files. (GENERATED_MAKE_BUILTINS_INCS, DEF_FILES): Delete. (LIBINTERP_BUILT_DISTFILES): Include $(OPT_HANDLERS) here. (LIBINTERP_BUILT_NODISTFILES): Not here. Remove $(ALL_DEF_FILES from the list. (libinterp_EXTRA_DIST): Remove mkdefs from the list. (FOUND_DEFUN_FILES): Rename from SRC_DEF_FILES. (DLDFCN_DEFUN_FILES): Rename from DLDFCN_DEF_FILES. (SRC_DEFUN_FILES): Rename from SRC_DEF_FILES. (ALL_DEFUN_FILES): Rename from ALL_DEF_FILES. (%.df: %.cc): Delete pattern rule. (libinterp/build-env-features.cc, libinterp/builtins.cc, libinterp/dldfcn/PKG_ADD): Use mv instead of move-if-change. (libinterp/builtins.cc, libinterp/builtin-defun-decls.h): Update mkbuiltins command. ($(srcdir)/libinterp/DOCSTRINGS): Update gendoc.pl command. * liboctave/module.mk (BUILT_SOURCES): Don't include liboctave-build-info.cc in the list.
author John W. Eaton <jwe@octave.org>
date Tue, 21 Jun 2016 16:07:51 -0400
parents aba2e6293dd8
children 6ca3acf5fad8
line wrap: on
line source

/*

Copyright (C) 1996-2015 John W. Eaton

This file is part of Octave.

Octave is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation; either version 3 of the License, or (at your
option) any later version.

Octave is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
for more details.

You should have received a copy of the GNU General Public License
along with Octave; see the file COPYING.  If not, see
<http://www.gnu.org/licenses/>.

*/

#if defined (HAVE_CONFIG_H)
#  include "config.h"
#endif

#include <string>

#include "schur.h"

#include "defun.h"
#include "error.h"
#include "errwarn.h"
#include "ovl.h"
#include "utils.h"

template <typename Matrix>
static octave_value
mark_upper_triangular (const Matrix& a)
{
  octave_value retval = a;

  octave_idx_type n = a.rows ();
  assert (a.columns () == n);

  const typename Matrix::element_type zero = typename Matrix::element_type ();

  for (octave_idx_type i = 0; i < n; i++)
    if (a(i,i) == zero)
      return retval;

  retval.matrix_type (MatrixType::Upper);

  return retval;
}

DEFUN (schur, args, nargout,
       doc: /* -*- texinfo -*-
@deftypefn  {} {@var{S} =} schur (@var{A})
@deftypefnx {} {@var{S} =} schur (@var{A}, "real")
@deftypefnx {} {@var{S} =} schur (@var{A}, "complex")
@deftypefnx {} {@var{S} =} schur (@var{A}, @var{opt})
@deftypefnx {} {[@var{U}, @var{S}] =} schur (@dots{})
@cindex Schur decomposition
Compute the Schur@tie{}decomposition of @var{A}.

The Schur@tie{}decomposition is defined as
@tex
$$
 S = U^T A U
$$
@end tex
@ifnottex

@example
@code{@var{S} = @var{U}' * @var{A} * @var{U}}
@end example

@end ifnottex
where @var{U} is a unitary matrix
@tex
($U^T U$ is identity)
@end tex
@ifnottex
(@code{@var{U}'* @var{U}} is identity)
@end ifnottex
and @var{S} is upper triangular.  The eigenvalues of @var{A} (and @var{S})
are the diagonal elements of @var{S}.  If the matrix @var{A} is real, then
the real Schur@tie{}decomposition is computed, in which the matrix @var{U}
is orthogonal and @var{S} is block upper triangular with blocks of size at
most
@tex
$2 \times 2$
@end tex
@ifnottex
@code{2 x 2}
@end ifnottex
along the diagonal.  The diagonal elements of @var{S}
(or the eigenvalues of the
@tex
$2 \times 2$
@end tex
@ifnottex
@code{2 x 2}
@end ifnottex
blocks, when appropriate) are the eigenvalues of @var{A} and @var{S}.

The default for real matrices is a real Schur@tie{}decomposition.
A complex decomposition may be forced by passing the flag
@qcode{"complex"}.

The eigenvalues are optionally ordered along the diagonal according to the
value of @var{opt}.  @code{@var{opt} = "a"} indicates that all eigenvalues
with negative real parts should be moved to the leading block of @var{S}
(used in @code{are}), @code{@var{opt} = "d"} indicates that all
eigenvalues with magnitude less than one should be moved to the leading
block of @var{S} (used in @code{dare}), and @code{@var{opt} = "u"}, the
default, indicates that no ordering of eigenvalues should occur.  The
leading @var{k} columns of @var{U} always span the @var{A}-invariant
subspace corresponding to the @var{k} leading eigenvalues of @var{S}.

The Schur@tie{}decomposition is used to compute eigenvalues of a square
matrix, and has applications in the solution of algebraic Riccati equations
in control (see @code{are} and @code{dare}).
@seealso{rsf2csf, ordschur, lu, chol, hess, qr, qz, svd}
@end deftypefn */)
{
  int nargin = args.length ();

  if (nargin < 1 || nargin > 2 || nargout > 2)
    print_usage ();

  octave_value arg = args(0);

  std::string ord;
  if (nargin == 2)
    ord = args(1).xstring_value ("schur: second argument must be a string");

  bool force_complex = false;

  if (ord == "real")
    {
      ord = "";
    }
  else if (ord == "complex")
    {
      force_complex = true;
      ord = "";
    }
  else
    {
      char ord_char = ord.empty () ? 'U' : ord[0];

      if (ord_char != 'U' && ord_char != 'A' && ord_char != 'D'
          && ord_char != 'u' && ord_char != 'a' && ord_char != 'd')
        {
          warning ("schur: incorrect ordered schur argument '%s'",
                   ord.c_str ());
          return ovl ();
        }
    }

  octave_idx_type nr = arg.rows ();
  octave_idx_type nc = arg.columns ();

  if (nr != nc)
    err_square_matrix_required ("schur", "A");

  if (! arg.is_numeric_type ())
    err_wrong_type_arg ("schur", arg);

  octave_value_list retval;

  if (arg.is_single_type ())
    {
      if (! force_complex && arg.is_real_type ())
        {
          FloatMatrix tmp = arg.float_matrix_value ();

          if (nargout <= 1)
            {
              schur<FloatMatrix> result (tmp, ord, false);
              retval = ovl (result.schur_matrix ());
            }
          else
            {
              schur<FloatMatrix> result (tmp, ord, true);
              retval = ovl (result.unitary_matrix (),
                            result.schur_matrix ());
            }
        }
      else
        {
          FloatComplexMatrix ctmp = arg.float_complex_matrix_value ();

          if (nargout <= 1)
            {
              schur<FloatComplexMatrix> result (ctmp, ord, false);
              retval = ovl (mark_upper_triangular (result.schur_matrix ()));
            }
          else
            {
              schur<FloatComplexMatrix> result (ctmp, ord, true);
              retval = ovl (result.unitary_matrix (),
                            mark_upper_triangular (result.schur_matrix ()));
            }
        }
    }
  else
    {
      if (! force_complex && arg.is_real_type ())
        {
          Matrix tmp = arg.matrix_value ();

          if (nargout <= 1)
            {
              schur<Matrix> result (tmp, ord, false);
              retval = ovl (result.schur_matrix ());
            }
          else
            {
              schur<Matrix> result (tmp, ord, true);
              retval = ovl (result.unitary_matrix (),
                            result.schur_matrix ());
            }
        }
      else
        {
          ComplexMatrix ctmp = arg.complex_matrix_value ();

          if (nargout <= 1)
            {
              schur<ComplexMatrix> result (ctmp, ord, false);
              retval = ovl (mark_upper_triangular (result.schur_matrix ()));
            }
          else
            {
              schur<ComplexMatrix> result (ctmp, ord, true);
              retval = ovl (result.unitary_matrix (),
                            mark_upper_triangular (result.schur_matrix ()));
            }
        }
    }

  return retval;
}

/*
%!test
%! a = [1, 2, 3; 4, 5, 9; 7, 8, 6];
%! [u, s] = schur (a);
%! assert (u' * a * u, s, sqrt (eps));

%!test
%! a = single ([1, 2, 3; 4, 5, 9; 7, 8, 6]);
%! [u, s] = schur (a);
%! assert (u' * a * u, s, sqrt (eps ("single")));

%!error schur ()
%!error schur (1,2,3)
%!error [a,b,c] = schur (1)
%!error <must be a square matrix> schur ([1, 2, 3; 4, 5, 6])
%!error <wrong type argument 'cell'> schur ({1})
%!warning <incorrect ordered schur argument> schur ([1, 2; 3, 4], "bad_opt");

*/

DEFUN (rsf2csf, args, nargout,
       doc: /* -*- texinfo -*-
@deftypefn {} {[@var{U}, @var{T}] =} rsf2csf (@var{UR}, @var{TR})
Convert a real, upper quasi-triangular Schur@tie{}form @var{TR} to a
complex, upper triangular Schur@tie{}form @var{T}.

Note that the following relations hold:

@tex
$UR \cdot TR \cdot {UR}^T = U T U^{\dagger}$ and
$U^{\dagger} U$ is the identity matrix I.
@end tex
@ifnottex
@tcode{@var{UR} * @var{TR} * @var{UR}' = @var{U} * @var{T} * @var{U}'} and
@code{@var{U}' * @var{U}} is the identity matrix I.
@end ifnottex

Note also that @var{U} and @var{T} are not unique.
@seealso{schur}
@end deftypefn */)
{
  if (args.length () != 2 || nargout > 2)
    print_usage ();

  if (! args(0).is_numeric_type ())
    err_wrong_type_arg ("rsf2csf", args(0));
  if (! args(1).is_numeric_type ())
    err_wrong_type_arg ("rsf2csf", args(1));
  if (args(0).is_complex_type () || args(1).is_complex_type ())
    error ("rsf2csf: UR and TR must be real matrices");

  if (args(0).is_single_type () || args(1).is_single_type ())
    {
      FloatMatrix u = args(0).float_matrix_value ();
      FloatMatrix t = args(1).float_matrix_value ();

      schur<FloatComplexMatrix> cs
        = rsf2csf<FloatComplexMatrix, FloatMatrix> (t, u);

      return ovl (cs.unitary_matrix (), cs.schur_matrix ());
    }
  else
    {
      Matrix u = args(0).matrix_value ();
      Matrix t = args(1).matrix_value ();

      schur<ComplexMatrix> cs = rsf2csf<ComplexMatrix, Matrix> (t, u);

      return ovl (cs.unitary_matrix (), cs.schur_matrix ());
    }
}

/*
%!test
%! A = [1, 1, 1, 2; 1, 2, 1, 1; 1, 1, 3, 1; -2, 1, 1, 1];
%! [u, t] = schur (A);
%! [U, T] = rsf2csf (u, t);
%! assert (norm (u * t * u' - U * T * U'), 0, 1e-12);
%! assert (norm (A - U * T * U'), 0, 1e-12);

%!test
%! A = rand (10);
%! [u, t] = schur (A);
%! [U, T] = rsf2csf (u, t);
%! assert (norm (tril (T, -1)), 0);
%! assert (norm (U * U'), 1, 1e-14);

%!test
%! A = [0, 1;-1, 0];
%! [u, t] = schur (A);
%! [U, T] = rsf2csf (u,t);
%! assert (U * T * U', A, 1e-14);
*/