view scripts/geometry/griddata.m @ 14237:11949c9795a0

Revamp %!demos in m-files to use Octave coding conventions on spacing, etc. Add clf() to all demos using plot features to get reproducibility. Use 64 as input to all colormaps (jet (64)) to get reproducibility. * bicubic.m, cell2mat.m, celldisp.m, cplxpair.m, interp1.m, interp2.m, interpft.m, interpn.m, profile.m, profshow.m, convhull.m, delaunay.m, griddata.m, inpolygon.m, voronoi.m, autumn.m, bone.m, contrast.m, cool.m, copper.m, flag.m, gmap40.m, gray.m, hot.m, hsv.m, image.m, imshow.m, jet.m, ocean.m, pink.m, prism.m, rainbow.m, spring.m, summer.m, white.m, winter.m, condest.m, onenormest.m, axis.m, clabel.m, colorbar.m, comet.m, comet3.m, compass.m, contour.m, contour3.m, contourf.m, cylinder.m, daspect.m, ellipsoid.m, errorbar.m, ezcontour.m, ezcontourf.m, ezmesh.m, ezmeshc.m, ezplot.m, ezplot3.m, ezpolar.m, ezsurf.m, ezsurfc.m, feather.m, fill.m, fplot.m, grid.m, hold.m, isosurface.m, legend.m, loglog.m, loglogerr.m, pareto.m, patch.m, pbaspect.m, pcolor.m, pie.m, pie3.m, plot3.m, plotmatrix.m, plotyy.m, polar.m, quiver.m, quiver3.m, rectangle.m, refreshdata.m, ribbon.m, rose.m, scatter.m, scatter3.m, semilogx.m, semilogxerr.m, semilogy.m, semilogyerr.m, shading.m, slice.m, sombrero.m, stairs.m, stem.m, stem3.m, subplot.m, surf.m, surfc.m, surfl.m, surfnorm.m, text.m, title.m, trimesh.m, triplot.m, trisurf.m, uigetdir.m, uigetfile.m, uimenu.m, uiputfile.m, waitbar.m, xlim.m, ylim.m, zlim.m, mkpp.m, pchip.m, polyaffine.m, spline.m, bicgstab.m, cgs.m, gplot.m, pcg.m, pcr.m, treeplot.m, strtok.m, demo.m, example.m, rundemos.m, speed.m, test.m, calendar.m, datestr.m, datetick.m, weekday.m: Revamp %!demos to use Octave coding conventions on spacing, etc.
author Rik <octave@nomad.inbox5.com>
date Fri, 20 Jan 2012 12:59:53 -0800
parents 72c96de7a403
children c4fa5e0b6193
line wrap: on
line source

## Copyright (C) 1999-2012 Kai Habel
##
## This file is part of Octave.
##
## Octave is free software; you can redistribute it and/or modify it
## under the terms of the GNU General Public License as published by
## the Free Software Foundation; either version 3 of the License, or (at
## your option) any later version.
##
## Octave is distributed in the hope that it will be useful, but
## WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
## General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with Octave; see the file COPYING.  If not, see
## <http://www.gnu.org/licenses/>.

## -*- texinfo -*-
## @deftypefn  {Function File} {@var{zi} =} griddata (@var{x}, @var{y}, @var{z}, @var{xi}, @var{yi}, @var{method})
## @deftypefnx {Function File} {[@var{xi}, @var{yi}, @var{zi}] =} griddata (@var{x}, @var{y}, @var{z}, @var{xi}, @var{yi}, @var{method})
##
## Generate a regular mesh from irregular data using interpolation.
## The function is defined by @code{@var{z} = f (@var{x}, @var{y})}.
## Inputs @code{@var{x}, @var{y}, @var{z}} are vectors of the same length
## or @code{@var{x}, @var{y}} are vectors and @code{@var{z}} is matrix.
##
## The interpolation points are all @code{(@var{xi}, @var{yi})}.  If
## @var{xi}, @var{yi} are vectors then they are made into a 2-D mesh.
##
## The interpolation method can be @code{"nearest"}, @code{"cubic"} or
## @code{"linear"}.  If method is omitted it defaults to @code{"linear"}.
## @seealso{delaunay}
## @end deftypefn

## Author:      Kai Habel <kai.habel@gmx.de>
## Adapted-by:  Alexander Barth <barth.alexander@gmail.com>
##              xi and yi are not "meshgridded" if both are vectors
##              of the same size (for compatibility)

function [rx, ry, rz] = griddata (x, y, z, xi, yi, method)

  if (nargin == 5)
    method = "linear";
  endif
  if (nargin < 5 || nargin > 7)
    print_usage ();
  endif

  if (ischar (method))
    method = tolower (method);
  endif

  if (isvector (x) && isvector (y) && all ([numel(y), numel(x)] == size (z)))
    [x, y] = meshgrid (x, y);
  elseif (! all (size (x) == size (y) & size (x) == size (z)))
    if (isvector (z))
      error ("griddata: X, Y, and Z, be vectors of same length");
    else
      error ("griddata: lengths of X, Y must match the columns and rows of Z");
    endif
  endif

  ## Meshgrid xi and yi if they are a row and column vector.
  if (rows (xi) == 1 && columns (yi) == 1)
    [xi, yi] = meshgrid (xi, yi);
  endif

  if (! size_equal (xi, yi))
    error ("griddata: XI and YI must be vectors or matrices of same size");
  endif

  [nr, nc] = size (xi);

  x = x(:);
  y = y(:);
  z = z(:);

  ## Triangulate data.
  tri = delaunay (x, y);
  zi = NaN (size (xi));

  if (strcmp (method, "cubic"))
    error ("griddata: cubic interpolation not yet implemented");

  elseif (strcmp (method, "nearest"))
    ## Search index of nearest point.
    idx = dsearch (x, y, tri, xi, yi);
    valid = !isnan (idx);
    zi(valid) = z(idx(valid));

  elseif (strcmp (method, "linear"))
    ## Search for every point the enclosing triangle.
    tri_list = tsearch (x, y, tri, xi(:), yi(:));

    ## Only keep the points within triangles.
    valid = !isnan (tri_list);
    tri_list = tri_list(valid);
    nr_t = rows (tri_list);

    tri = tri(tri_list,:);

    ## Assign x,y,z for each point of triangle.
    x1 = x(tri(:,1));
    x2 = x(tri(:,2));
    x3 = x(tri(:,3));

    y1 = y(tri(:,1));
    y2 = y(tri(:,2));
    y3 = y(tri(:,3));

    z1 = z(tri(:,1));
    z2 = z(tri(:,2));
    z3 = z(tri(:,3));

    ## Calculate norm vector.
    N = cross ([x2-x1, y2-y1, z2-z1], [x3-x1, y3-y1, z3-z1]);
    ## Normalize.
    N = diag (norm (N, "rows")) \ N;

    ## Calculate D of plane equation
    ## Ax+By+Cz+D = 0;
    D = -(N(:,1) .* x1 + N(:,2) .* y1 + N(:,3) .* z1);

    ## Calculate zi by solving plane equation for xi, yi.
    zi(valid) = -(N(:,1).*xi(:)(valid) + N(:,2).*yi(:)(valid) + D) ./ N(:,3);

  else
    error ("griddata: unknown interpolation METHOD");
  endif

  if (nargout == 3)
    rx = xi;
    ry = yi;
    rz = zi;
  elseif (nargout == 1)
    rx = zi;
  elseif (nargout == 0)
    mesh (xi, yi, zi);
  endif
endfunction


%!demo
%! clf;
%! x = 2*rand (100,1) - 1;
%! y = 2*rand (size (x)) - 1;
%! z = sin (2*(x.^2 + y.^2));
%! [xx,yy] = meshgrid (linspace (-1,1,32));
%! griddata (x,y,z,xx,yy);
%! title ("nonuniform grid sampled at 100 points");

%!demo
%! clf;
%! x = 2*rand (1000,1) - 1;
%! y = 2*rand (size (x)) - 1;
%! z = sin (2*(x.^2 + y.^2));
%! [xx,yy] = meshgrid (linspace (-1,1,32));
%! griddata (x,y,z,xx,yy);
%! title ("nonuniform grid sampled at 1000 points");

%!demo
%! clf;
%! x = 2*rand (1000,1) - 1;
%! y = 2*rand (size (x)) - 1;
%! z = sin (2*(x.^2 + y.^2));
%! [xx,yy] = meshgrid (linspace (-1, 1, 32));
%! griddata (x,y,z,xx,yy,"nearest");
%! title ("nonuniform grid sampled at 1000 points with nearest neighbor");

%!testif HAVE_QHULL
%! [xx,yy] = meshgrid (linspace (-1,1,32));
%! x = xx(:);
%! x = x + 10*(2*round (rand (size(x))) - 1) * eps;
%! y = yy(:);
%! y = y + 10*(2*round (rand (size(y))) - 1) * eps;
%! z = sin (2*(x.^2 + y.^2));
%! zz = griddata (x,y,z,xx,yy,"linear");
%! zz2 = sin (2*(xx.^2 + yy.^2));
%! zz2(isnan (zz)) = NaN;
%! assert (zz, zz2, 100*eps);