view scripts/polynomial/padecoef.m @ 28789:28de41192f3c

Eliminate unneeded verification of nargin, nargout in m-files. * FIRfilter.m, FIRfilter_aggregation.m, get.m, polynomial.m, polynomial_superiorto.m, polynomial2.m, makeUniqueStrings.m, base64decode.m, base64encode.m, cd.m, lin2mu.m, record.m, sound.m, soundsc.m, accumarray.m, accumdim.m, bitcmp.m, bitset.m, cart2pol.m, celldisp.m, circshift.m, cplxpair.m, cumtrapz.m, flip.m, idivide.m, interpft.m, logspace.m, pol2cart.m, polyarea.m, postpad.m, prepad.m, rat.m, rot90.m, rotdim.m, shift.m, shiftdim.m, sortrows.m, trapz.m, dsearch.m, dsearchn.m, getappdata.m, getpixelposition.m, guidata.m, guihandles.m, isappdata.m, listfonts.m, uigetdir.m, waitforbuttonpress.m, __makeinfo__.m, doc.m, get_first_help_sentence.m, autumn.m, bone.m, brighten.m, cmpermute.m, cmunique.m, colorcube.m, contrast.m, cool.m, copper.m, cubehelix.m, flag.m, gray.m, gray2ind.m, hot.m, hsv.m, im2double.m, im2frame.m, imformats.m, jet.m, lines.m, ocean.m, pink.m, prism.m, rainbow.m, rgbplot.m, spinmap.m, spring.m, summer.m, viridis.m, white.m, winter.m, beep.m, importdata.m, is_valid_file_id.m, javachk.m, javaclasspath.m, findstr.m, genvarname.m, strmatch.m, bandwidth.m, commutation_matrix.m, cond.m, cross.m, isdefinite.m, ishermitian.m, issymmetric.m, krylov.m, linsolve.m, logm.m, lscov.m, null.m, ordeig.m, orth.m, rank.m, rref.m, vecnorm.m, bunzip2.m, citation.m, computer.m, copyfile.m, dir.m, dos.m, fileattrib.m, gunzip.m, inputParser.m, inputname.m, ismac.m, ispc.m, isunix.m, license.m, list_primes.m, methods.m, mkdir.m, movefile.m, nargchk.m, news.m, orderfields.m, recycle.m, tar.m, unix.m, unpack.m, untar.m, unzip.m, ver.m, version.m, what.m, zip.m, decic.m, fminbnd.m, fminunc.m, fsolve.m, fzero.m, glpk.m, humps.m, lsqnonneg.m, optimget.m, pqpnonneg.m, sqp.m, pathdef.m, camlookat.m, hidden.m, specular.m, plotmatrix.m, smooth3.m, sombrero.m, stemleaf.m, __gnuplot_drawnow__.m, __opengl_info__.m, ancestor.m, cla.m, close.m, closereq.m, copyobj.m, gca.m, gcf.m, ginput.m, graphics_toolkit.m, groot.m, hgload.m, hgsave.m, isgraphics.m, ishold.m, linkaxes.m, meshgrid.m, newplot.m, refresh.m, refreshdata.m, rotate.m, saveas.m, struct2hdl.m, conv.m, mkpp.m, mpoles.m, padecoef.m, pchip.m, polyder.m, polyfit.m, polygcd.m, polyint.m, polyout.m, polyval.m, ppder.m, ppint.m, getpref.m, ispref.m, rmpref.m, profexport.m, profshow.m, powerset.m, arch_fit.m, arma_rnd.m, blackman.m, detrend.m, diffpara.m, fftconv.m, fftfilt.m, filter2.m, freqz.m, freqz_plot.m, hamming.m, hanning.m, sinetone.m, sinewave.m, spectral_adf.m, spectral_xdf.m, stft.m, unwrap.m, gplot.m, ichol.m, ilu.m, spdiags.m, sprand.m, sprandn.m, spstats.m, svds.m, treelayout.m, treeplot.m, betainc.m, betaincinv.m, ellipke.m, gammainc.m, gammaincinv.m, legendre.m, pow2.m, hankel.m, pascal.m, rosser.m, toeplitz.m, bounds.m, corr.m, cov.m, histc.m, kendall.m, kurtosis.m, mad.m, mode.m, moment.m, prctile.m, quantile.m, range.m, ranks.m, run_count.m, skewness.m, spearman.m, std.m, var.m, zscore.m, dec2base.m, dec2bin.m, dec2hex.m, index.m, mat2str.m, native2unicode.m, ostrsplit.m, strjoin.m, strjust.m, strtok.m, substr.m, unicode2native.m, untabify.m, __debug_octave__.m, demo.m, example.m, fail.m, oruntests.m, dump_demos.m, speed.m, test.m, date.m, datenum.m, datestr.m, datevec.m, is_leap_year.m, now.m, weekday.m: Eliminate unneeded verification of nargin, nargout in m-files now that the interpreter checks these values.
author Rik <rik@octave.org>
date Thu, 24 Sep 2020 14:44:58 -0700
parents bd51beb6205e
children 90fea9cc9caa
line wrap: on
line source

########################################################################
##
## Copyright (C) 2014-2020 The Octave Project Developers
##
## See the file COPYRIGHT.md in the top-level directory of this
## distribution or <https://octave.org/copyright/>.
##
## This file is part of Octave.
##
## Octave is free software: you can redistribute it and/or modify it
## under the terms of the GNU General Public License as published by
## the Free Software Foundation, either version 3 of the License, or
## (at your option) any later version.
##
## Octave is distributed in the hope that it will be useful, but
## WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
## GNU General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with Octave; see the file COPYING.  If not, see
## <https://www.gnu.org/licenses/>.
##
########################################################################

## -*- texinfo -*-
## @deftypefn  {} {[@var{num}, @var{den}] =} padecoef (@var{T})
## @deftypefnx {} {[@var{num}, @var{den}] =} padecoef (@var{T}, @var{N})
## Compute the @var{N}th-order Pad@'e approximant of the continuous-time
## delay @var{T} in transfer function form.
##
## @tex
## The Pad\'e approximant of $e^{-sT}$ is defined by the following equation
## $$ e^{-sT} \approx {P_n(s) \over Q_n(s)} $$
## where both $P_n(s)$ and $Q_n(s)$ are $N^{th}$-order rational functions
## defined by the following expressions
## $$ P_n(s)=\sum_{k=0}^N {(2N - k)!N!\over (2N)!k!(N - k)!}(-sT)^k $$
## $$ Q_n(s) = P_n(-s) $$
## @end tex
## @ifnottex
## The Pad@'e approximant of @nospell{@code{exp (-sT)}} is defined by the
## following equation
##
## @example
## @group
##              Pn(s)
## exp (-sT) ~ -------
##              Qn(s)
## @end group
## @end example
##
## Where both @nospell{Pn(s) and Qn(s)} are @var{N}th-order rational functions
## defined by the following expressions
##
## @example
## @group
##          N    (2N - k)!N!        k
## Pn(s) = SUM --------------- (-sT)
##         k=0 (2N)!k!(N - k)!
##
## Qn(s) = Pn(-s)
## @end group
## @end example
##
## @end ifnottex
##
## The inputs @var{T} and @var{N} must be non-negative numeric scalars.  If
## @var{N} is unspecified it defaults to 1.
##
## The output row vectors @var{num} and @var{den} contain the numerator and
## denominator coefficients in descending powers of s.  Both are
## @var{N}th-order polynomials.
##
## For example:
##
## @smallexample
## @group
## t = 0.1;
## n = 4;
## [num, den] = padecoef (t, n)
## @result{} num =
##
##       1.0000e-04  -2.0000e-02   1.8000e+00  -8.4000e+01   1.6800e+03
##
## @result{} den =
##
##       1.0000e-04   2.0000e-02   1.8000e+00   8.4000e+01   1.6800e+03
## @end group
## @end smallexample
## @end deftypefn

function [num, den] = padecoef (T, N = 1)

  if (nargin < 1)
    print_usage ();
  endif

  if (! (isscalar (T) && isnumeric (T) && T >= 0))
    error ("padecoef: T must be a non-negative scalar");
  elseif (! (isscalar (N) && isnumeric (N) && N >= 0))
    error ("padecoef: N must be a non-negative scalar");
  endif

  N = round (N);
  k = N : -1 : 0;
  num = prod (linspace ((N - k + 1), (2 * N - k), N)', ones (1, N)) ...
        / prod (N + 1 : 2 * N) ./ factorial (k);
  num /= num(1);
  den = num .* (T .^ k);
  num .*= ((-T) .^ k);

endfunction


%!test
%! T = 1;
%! [n_obs, d_obs] = padecoef (T);
%! n_exp = [1, 2] .* [-T, 1];
%! d_exp = [1, 2] .* [T, 1];
%! assert ([n_obs, d_obs], [n_exp, d_exp], eps);

%!test
%! T = 0.1;
%! [n_obs, d_obs] = padecoef (T);
%! n_exp = [1, 2] .* [-T, 1];
%! d_exp = [1, 2] .* [T, 1];
%! assert ([n_obs, d_obs], [n_exp, d_exp], eps);

%!test
%! T = 1;
%! N = 2;
%! k = N : -1 : 0;
%! [n_obs, d_obs] = padecoef (T, N);
%! n_exp = [1, 6, 12] .* ((-T) .^ k);
%! d_exp = [1, 6, 12] .* (T .^ k);
%! assert ([n_obs, d_obs], [n_exp, d_exp], eps);

%!test
%! T = 0.25;
%! N = 2;
%! k = N : -1 : 0;
%! [n_obs, d_obs] = padecoef (T, 2);
%! n_exp = [1, 6, 12] .* ((-T) .^ k);
%! d_exp = [1, 6, 12] .* (T .^ k);
%! assert ([n_obs, d_obs], [n_exp, d_exp], eps);

%!test
%! T = 0.47;
%! N = 3;
%! k = N : -1 : 0;
%! [n_obs, d_obs] = padecoef (T, N);
%! n_exp = [1, 12, 60, 120] .* ((-T) .^ k);
%! d_exp = [1, 12, 60, 120] .* (T .^ k);
%! assert ([n_obs, d_obs], [n_exp, d_exp], eps);

%!test
%! T = 1;
%! N = 7;
%! i = 0 : 2 * N;
%! b = ((-T) .^ i) ./ factorial (i);
%! A = [[eye(N + 1); zeros(N, N + 1)], ...
%!      [zeros(1, N); toeplitz(-b(1 : 2 * N), [-b(1), zeros(1, N-1)])]];
%! x = A \ b';
%! k = N : -1 : 0;
%! d_exp = [flipud(x(N + 2 : 2 * N + 1)); 1]';
%! n_exp = flipud(x(1 : N + 1))';
%! n_exp ./= d_exp(1);
%! d_exp ./= d_exp(1);
%! [n_obs, d_obs] = padecoef (T, N);
%! assert ([n_obs, d_obs], [n_exp, d_exp], 1e-2);

## For checking in Wolfram Alpha (look at Alternate forms -> more):
## PadeApproximant[Exp[-x * T], {x, 0, {n, n}}]

## Test input validation
%!error padecoef ()
%!error padecoef (1,2,3)
%!error <T must be a non-negative scalar> padecoef ([1,2])
%!error <T must be a non-negative scalar> padecoef ({1})
%!error <T must be a non-negative scalar> padecoef (-1)
%!error <N must be a non-negative scalar> padecoef (1, [1,2])
%!error <N must be a non-negative scalar> padecoef (1, {1})
%!error <N must be a non-negative scalar> padecoef (1, -1)