view libinterp/octave-value/ov-struct.cc @ 21211:2cf8bc5c7017

use "#if defined (HAVE_FOO)" instead of "#if HAVE_FOO" for feature tests * configure.ac (HAVE_HDF5_INT2FLOAT_CONVERSIONS): AC_DEFINE here. * ls-hdf5.cc (HAVE_HDF5_INT2FLOAT_CONVERSION): Delete definition. * ls-hdf5.cc, ls-hdf5.h, ccolamd.cc, dmperm.cc, ov-base-int.cc, ov-bool-mat.cc, ov-bool-sparse.cc, ov-bool.cc, ov-cell.cc, ov-class.cc, ov-complex.cc, ov-cx-mat.cc, ov-cx-sparse.cc, ov-fcn-handle.cc, ov-fcn-inline.cc, ov-float.cc, ov-flt-complex.cc, ov-flt-cx-mat.cc, ov-flt-re-mat.cc, ov-java.cc, ov-range.cc, ov-re-mat.cc, ov-re-sparse.cc, ov-scalar.cc, ov-str-mat.cc, ov-struct.cc, pt-eval.cc: Use #if defined (HAVE_FOO) instead of #if HAVE_FOO.
author John W. Eaton <jwe@octave.org>
date Sat, 06 Feb 2016 08:48:47 -0500
parents fcac5dbbf9ed
children 40de9f8f23a6
line wrap: on
line source

/*

Copyright (C) 1996-2015 John W. Eaton

This file is part of Octave.

Octave is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation; either version 3 of the License, or (at your
option) any later version.

Octave is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
for more details.

You should have received a copy of the GNU General Public License
along with Octave; see the file COPYING.  If not, see
<http://www.gnu.org/licenses/>.

*/

#ifdef HAVE_CONFIG_H
#  include <config.h>
#endif

#include <iostream>

#include "Cell.h"
#include "defun.h"
#include "error.h"
#include "errwarn.h"
#include "mxarray.h"
#include "oct-lvalue.h"
#include "oct-hdf5.h"
#include "ov-struct.h"
#include "unwind-prot.h"
#include "utils.h"
#include "variables.h"

#include "Array-util.h"
#include "oct-locbuf.h"

#include "byte-swap.h"
#include "ls-oct-text.h"
#include "ls-oct-binary.h"
#include "ls-hdf5.h"
#include "ls-utils.h"
#include "pr-output.h"


DEFINE_OV_TYPEID_FUNCTIONS_AND_DATA(octave_struct, "struct", "struct");

// How many levels of structure elements should we print?
static int Vstruct_levels_to_print = 2;

// TRUE means print struct array contents, up to the number of levels
// specified by struct_levels_to_print.
static bool Vprint_struct_array_contents = false;

octave_base_value *
octave_struct::try_narrowing_conversion (void)
{
  octave_base_value *retval = 0;

  if (numel () == 1)
    retval = new octave_scalar_struct (map.checkelem (0));

  return retval;
}

Cell
octave_struct::dotref (const octave_value_list& idx, bool auto_add)
{
  Cell retval;

  assert (idx.length () == 1);

  std::string nm = idx(0).string_value ();

  octave_map::const_iterator p = map.seek (nm);

  if (p != map.end ())
    retval = map.contents (p);
  else if (auto_add)
    retval = (is_empty ()) ? Cell (dim_vector (1, 1)) : Cell (dims ());
  else
    error_with_id ("Octave:invalid-indexing",
                   "structure has no member '%s'", nm.c_str ());

  return retval;
}

static void
err_invalid_index_for_assignment (void)
{
  error ("invalid index for structure array assignment");
}

static void
err_invalid_index_type (const std::string& nm, char t)
{
  error ("%s cannot be indexed with %c", nm.c_str (), t);
}

static void
maybe_warn_invalid_field_name (const std::string& key, const char *who)
{
  if (! valid_identifier (key))
    {
      if (who)
        warning_with_id ("Octave:language-extension",
                         "%s: invalid structure field name '%s'",
                         who, key.c_str ());
      else
        warning_with_id ("Octave:language-extension",
                         "invalid structure field name '%s'",
                         key.c_str ());
    }
}

octave_value_list
octave_struct::subsref (const std::string& type,
                        const std::list<octave_value_list>& idx,
                        int nargout)
{
  octave_value_list retval;

  int skip = 1;

  switch (type[0])
    {
    case '(':
      {
        if (type.length () > 1 && type[1] == '.')
          {
            std::list<octave_value_list>::const_iterator p = idx.begin ();
            octave_value_list key_idx = *++p;

            const Cell tmp = dotref (key_idx);

            const Cell t = tmp.index (idx.front ());

            retval(0) = (t.numel () == 1) ? t(0) : octave_value (t, true);

            // We handled two index elements, so tell
            // next_subsref to skip both of them.

            skip++;
          }
        else
          retval(0) = do_index_op (idx.front ());
      }
      break;

    case '.':
      {
        if (map.numel () > 0)
          {
            const Cell t = dotref (idx.front ());

            retval(0) = (t.numel () == 1) ? t(0) : octave_value (t, true);
          }
      }
      break;

    case '{':
      err_invalid_index_type (type_name (), type[0]);
      break;

    default:
      panic_impossible ();
    }

  // FIXME: perhaps there should be an
  // octave_value_list::next_subsref member function?  See also
  // octave_user_function::subsref.

  if (idx.size () > 1)
    retval = retval(0).next_subsref (nargout, type, idx, skip);

  return retval;
}

octave_value
octave_struct::subsref (const std::string& type,
                        const std::list<octave_value_list>& idx,
                        bool auto_add)
{
  octave_value retval;

  int skip = 1;

  switch (type[0])
    {
    case '(':
      {
        if (type.length () > 1 && type[1] == '.')
          {
            std::list<octave_value_list>::const_iterator p = idx.begin ();
            octave_value_list key_idx = *++p;

            const Cell tmp = dotref (key_idx, auto_add);

            const Cell t = tmp.index (idx.front (), auto_add);

            retval = (t.numel () == 1) ? t(0) : octave_value (t, true);

            // We handled two index elements, so tell
            // next_subsref to skip both of them.

            skip++;
          }
        else
          retval = do_index_op (idx.front (), auto_add);
      }
      break;

    case '.':
      {
        if (map.numel () > 0)
          {
            const Cell t = dotref (idx.front (), auto_add);

            retval = (t.numel () == 1) ? t(0) : octave_value (t, true);
          }
      }
      break;

    case '{':
      err_invalid_index_type (type_name (), type[0]);
      break;

    default:
      panic_impossible ();
    }

  // FIXME: perhaps there should be an
  // octave_value_list::next_subsref member function?  See also
  // octave_user_function::subsref.

  if (idx.size () > 1)
    retval = retval.next_subsref (auto_add, type, idx, skip);

  return retval;
}

/*
%!test
%! x(1).a.a = 1;
%! x(2).a.a = 2;
%! assert (size (x), [1, 2]);
%! assert (x(1).a.a, 1);
%! assert (x(2).a.a, 2);
*/

octave_value
octave_struct::numeric_conv (const octave_value& val,
                             const std::string& type)
{
  octave_value retval;

  if (type.length () > 0 && type[0] == '.' && ! val.is_map ())
    retval = octave_map ();
  else
    retval = val;

  return retval;
}

octave_value
octave_struct::subsasgn (const std::string& type,
                         const std::list<octave_value_list>& idx,
                         const octave_value& rhs)
{
  octave_value retval;

  int n = type.length ();

  octave_value t_rhs = rhs;

  if (idx.front ().empty ())
    error ("missing index in indexed assignment");

  if (n > 1 && ! (type.length () == 2 && type[0] == '(' && type[1] == '.'))
    {
      switch (type[0])
        {
        case '(':
          {
            if (type.length () > 1 && type[1] == '.')
              {
                std::list<octave_value_list>::const_iterator p = idx.begin ();
                octave_value_list t_idx = *p;

                octave_value_list key_idx = *++p;

                assert (key_idx.length () == 1);

                std::string key = key_idx(0).string_value ();

                maybe_warn_invalid_field_name (key, "subsasgn");

                std::list<octave_value_list> next_idx (idx);

                // We handled two index elements, so subsasgn to
                // needs to skip both of them.

                next_idx.erase (next_idx.begin ());
                next_idx.erase (next_idx.begin ());

                std::string next_type = type.substr (2);

                Cell tmpc (1, 1);
                octave_map::iterator pkey = map.seek (key);
                if (pkey != map.end ())
                  {
                    map.contents (pkey).make_unique ();
                    tmpc = map.contents (pkey).index (idx.front (), true);
                  }

                // FIXME: better code reuse?
                //        cf. octave_cell::subsasgn and the case below.
                if (tmpc.numel () != 1)
                  err_indexed_cs_list ();

                octave_value& tmp = tmpc(0);

                bool orig_undefined = tmp.is_undefined ();

                if (orig_undefined || tmp.is_zero_by_zero ())
                  {
                    tmp = octave_value::empty_conv (next_type, rhs);
                    tmp.make_unique (); // probably a no-op.
                  }
                else
                  // optimization: ignore the copy
                  // still stored inside our map.
                  tmp.make_unique (1);

                  t_rhs =(orig_undefined
                          ? tmp.undef_subsasgn (next_type, next_idx, rhs)
                          : tmp.subsasgn (next_type, next_idx, rhs));
              }
            else
              err_invalid_index_for_assignment ();
          }
          break;

        case '.':
          {
            octave_value_list key_idx = idx.front ();

            assert (key_idx.length () == 1);

            std::string key = key_idx(0).string_value ();

            maybe_warn_invalid_field_name (key, "subsasgn");

            std::list<octave_value_list> next_idx (idx);

            next_idx.erase (next_idx.begin ());

            std::string next_type = type.substr (1);

            Cell tmpc (1, 1);
            octave_map::iterator pkey = map.seek (key);
            if (pkey != map.end ())
              {
                map.contents (pkey).make_unique ();
                tmpc = map.contents (pkey);
              }

            // FIXME: better code reuse?

            if (tmpc.numel () == 1)
              {
                octave_value& tmp = tmpc(0);

                bool orig_undefined = tmp.is_undefined ();

                if (orig_undefined || tmp.is_zero_by_zero ())
                  {
                    tmp = octave_value::empty_conv (next_type, rhs);
                    tmp.make_unique (); // probably a no-op.
                  }
                else
                  // optimization: ignore the copy
                  // still stored inside our map.
                  tmp.make_unique (1);

                t_rhs = (orig_undefined
                         ? tmp.undef_subsasgn (next_type, next_idx, rhs)
                         : tmp.subsasgn (next_type, next_idx, rhs));
              }
            else
              err_indexed_cs_list ();
          }
          break;

        case '{':
          err_invalid_index_type (type_name (), type[0]);
          break;

        default:
          panic_impossible ();
        }
    }

  switch (type[0])
    {
    case '(':
      {
        if (n > 1 && type[1] == '.')
          {
            std::list<octave_value_list>::const_iterator p = idx.begin ();
            octave_value_list key_idx = *++p;
            octave_value_list idxf = idx.front ();

            assert (key_idx.length () == 1);

            std::string key = key_idx(0).string_value ();

            maybe_warn_invalid_field_name (key, "subsasgn");

            if (t_rhs.is_cs_list ())
              {
                Cell tmp_cell = Cell (t_rhs.list_value ());

                // Inquire the proper shape of the RHS.

                dim_vector didx = dims ().redim (idxf.length ());
                for (octave_idx_type k = 0; k < idxf.length (); k++)
                  if (! idxf(k).is_magic_colon ())
                    didx(k) = idxf(k).numel ();

                if (didx.numel () == tmp_cell.numel ())
                  tmp_cell = tmp_cell.reshape (didx);


                map.assign (idxf, key, tmp_cell);

                count++;
                retval = octave_value (this);
              }
            else
              {
                const octave_map& cmap =
                  const_cast<const octave_map &> (map);
                // cast to const reference, avoid forced key insertion.
                if (idxf.all_scalars ()
                    || cmap.contents (key).index (idxf, true).numel () == 1)
                  {
                    map.assign (idxf,
                                key, Cell (t_rhs.storable_value ()));

                    count++;
                    retval = octave_value (this);
                  }
                else
                  err_nonbraced_cs_list_assignment ();
              }
          }
        else
          {
            if (t_rhs.is_map () || t_rhs.is_object ())
              {
                octave_map rhs_map = t_rhs.xmap_value ("invalid structure assignment");

                map.assign (idx.front (), rhs_map);

                count++;
                retval = octave_value (this);
              }
            else
              {
                if (! t_rhs.is_null_value ())
                  error ("invalid structure assignment");

                map.delete_elements (idx.front ());

                count++;
                retval = octave_value (this);
              }
          }
      }
      break;

    case '.':
      {
        octave_value_list key_idx = idx.front ();

        assert (key_idx.length () == 1);

        std::string key = key_idx(0).string_value ();

        maybe_warn_invalid_field_name (key, "subsasgn");

        if (t_rhs.is_cs_list ())
          {
            Cell tmp_cell = Cell (t_rhs.list_value ());

            // The shape of the RHS is irrelevant, we just want
            // the number of elements to agree and to preserve the
            // shape of the left hand side of the assignment.

            if (numel () == tmp_cell.numel ())
              tmp_cell = tmp_cell.reshape (dims ());

            map.setfield (key, tmp_cell);
          }
        else
          {
            Cell tmp_cell(1, 1);
            tmp_cell(0) = t_rhs.storable_value ();
            map.setfield (key, tmp_cell);
          }

        count++;
        retval = octave_value (this);
      }
      break;

    case '{':
      err_invalid_index_type (type_name (), type[0]);
      break;

    default:
      panic_impossible ();
    }

  retval.maybe_mutate ();

  return retval;
}

octave_value
octave_struct::do_index_op (const octave_value_list& idx, bool resize_ok)
{
  // octave_map handles indexing itself.
  return map.index (idx, resize_ok);
}

size_t
octave_struct::byte_size (void) const
{
  // Neglect the size of the fieldnames.

  size_t retval = 0;

  for (octave_map::const_iterator p = map.begin (); p != map.end (); p++)
    {
      std::string key = map.key (p);

      octave_value val = octave_value (map.contents (p));

      retval += val.byte_size ();
    }

  return retval;
}

void
octave_struct::print (std::ostream& os, bool)
{
  print_raw (os);
}

void
octave_struct::print_raw (std::ostream& os, bool) const
{
  unwind_protect frame;

  frame.protect_var (Vstruct_levels_to_print);

  if (Vstruct_levels_to_print >= 0)
    {
      bool max_depth_reached = Vstruct_levels_to_print-- == 0;

      bool print_fieldnames_only
        = (max_depth_reached || ! Vprint_struct_array_contents);

      increment_indent_level ();

      newline (os);
      indent (os);
      dim_vector dv = dims ();
      os << dv.str () << " struct array containing the fields:";
      newline (os);

      increment_indent_level ();

      string_vector key_list = map.fieldnames ();

      for (octave_idx_type i = 0; i < key_list.numel (); i++)
        {
          std::string key = key_list[i];

          Cell val = map.contents (key);

          newline (os);

          if (print_fieldnames_only)
            {
              indent (os);
              os << key;
            }
          else
            {
              octave_value tmp (val);
              tmp.print_with_name (os, key);
            }
        }

      if (print_fieldnames_only)
        newline (os);

      decrement_indent_level ();
      decrement_indent_level ();
    }
  else
    {
      indent (os);
      os << "<structure>";
      newline (os);
    }
}

bool
octave_struct::print_name_tag (std::ostream& os, const std::string& name) const
{
  bool retval = false;

  indent (os);

  if (Vstruct_levels_to_print < 0)
    os << name << " = ";
  else
    {
      os << name << " =";
      newline (os);
      retval = true;
    }

  return retval;
}

static bool
scalar (const dim_vector& dims)
{
  return dims.length () == 2 && dims(0) == 1 && dims(1) == 1;
}


bool
octave_struct::save_ascii (std::ostream& os)
{
  octave_map m = map_value ();

  octave_idx_type nf = m.nfields ();

  const dim_vector dv = dims ();

  os << "# ndims: " << dv.length () << "\n";

  for (int i = 0; i < dv.length (); i++)
    os << " " << dv(i);
  os << "\n";

  os << "# length: " << nf << "\n";

  // Iterating over the list of keys will preserve the order of the
  // fields.
  string_vector keys = m.fieldnames ();

  for (octave_idx_type i = 0; i < nf; i++)
    {
      std::string key = keys(i);

      octave_value val = map.contents (key);

      bool b = save_text_data (os, val, key, false, 0);

      if (! b)
        return ! os.fail ();
    }

  return true;
}

bool
octave_struct::load_ascii (std::istream& is)
{
  octave_idx_type len = 0;
  dim_vector dv (1, 1);
  bool success = true;

  // KLUGE: earlier Octave versions did not save extra dimensions with struct,
  // and as a result did not preserve dimensions for empty structs.
  // The default dimensions were 1x1, which we want to preserve.
  string_vector keywords(2);

  keywords[0] = "ndims";
  keywords[1] = "length";

  std::string kw;

  if (extract_keyword (is, keywords, kw, len, true))
    {
      if (kw == keywords[0])
        {
          int mdims = std::max (static_cast<int> (len), 2);
          dv.resize (mdims);
          for (int i = 0; i < mdims; i++)
            is >> dv(i);

          success = extract_keyword (is, keywords[1], len);
        }
    }
  else
    success = false;

  if (! success || len < 0)
    error ("load: failed to extract number of elements in structure");

  if (len > 0)
    {
      octave_map m (dv);

      for (octave_idx_type j = 0; j < len; j++)
        {
          octave_value t2;
          bool dummy;

          // recurse to read cell elements
          std::string nm
            = read_text_data (is, "", dummy, t2, j);

          if (! is)
            break;

          Cell tcell = t2.is_cell () ? t2.xcell_value ("load: internal error loading struct elements") : Cell (t2);

          m.setfield (nm, tcell);
        }

      if (! is)
        error ("load: failed to load structure");

      map = m;
    }
  else if (len == 0)
    map = octave_map (dv);
  else
    panic_impossible ();

  return success;
}

bool
octave_struct::save_binary (std::ostream& os, bool& save_as_floats)
{
  octave_map m = map_value ();

  octave_idx_type nf = m.nfields ();

  dim_vector d = dims ();
  if (d.length () < 1)
    return false;

  // Use negative value for ndims
  int32_t di = - d.length ();
  os.write (reinterpret_cast<char *> (&di), 4);
  for (int i = 0; i < d.length (); i++)
    {
      di = d(i);
      os.write (reinterpret_cast<char *> (&di), 4);
    }

  int32_t len = nf;
  os.write (reinterpret_cast<char *> (&len), 4);

  // Iterating over the list of keys will preserve the order of the
  // fields.
  string_vector keys = m.fieldnames ();

  for (octave_idx_type i = 0; i < nf; i++)
    {
      std::string key = keys(i);

      octave_value val = map.contents (key);

      bool b = save_binary_data (os, val, key, "", 0, save_as_floats);

      if (! b)
        return ! os.fail ();
    }

  return true;
}

bool
octave_struct::load_binary (std::istream& is, bool swap,
                            oct_mach_info::float_format fmt)
{
  bool success = true;
  int32_t len;
  if (! is.read (reinterpret_cast<char *> (&len), 4))
    return false;
  if (swap)
    swap_bytes<4> (&len);

  dim_vector dv (1, 1);

  if (len < 0)
    {
      // We have explicit dimensions.
      int mdims = -len;

      int32_t di;
      dv.resize (mdims);

      for (int i = 0; i < mdims; i++)
        {
          if (! is.read (reinterpret_cast<char *> (&di), 4))
            return false;
          if (swap)
            swap_bytes<4> (&di);
          dv(i) = di;
        }

      if (! is.read (reinterpret_cast<char *> (&len), 4))
        return false;
      if (swap)
        swap_bytes<4> (&len);
    }

  if (len > 0)
    {
      octave_map m (dv);

      for (octave_idx_type j = 0; j < len; j++)
        {
          octave_value t2;
          bool dummy;
          std::string doc;

          // recurse to read cell elements
          std::string nm = read_binary_data (is, swap, fmt, "",
                                             dummy, t2, doc);

          if (! is)
            break;

          Cell tcell = t2.is_cell () ? t2.xcell_value ("load: internal error loading struct elements") : Cell (t2);

          m.setfield (nm, tcell);
        }

      if (! is)
        error ("load: failed to load structure");

      map = m;
    }
  else if (len == 0)
    map = octave_map (dv);
  else
    success = false;

  return success;
}

bool
octave_struct::save_hdf5 (octave_hdf5_id loc_id, const char *name, bool save_as_floats)
{
#if defined (HAVE_HDF5)

  hid_t data_hid = -1;

#if defined (HAVE_HDF5_18)
  data_hid = H5Gcreate (loc_id, name, octave_H5P_DEFAULT, octave_H5P_DEFAULT, octave_H5P_DEFAULT);
#else
  data_hid = H5Gcreate (loc_id, name, 0);
#endif
  if (data_hid < 0) return false;

  // recursively add each element of the structure to this group
  octave_map m = map_value ();

  octave_idx_type nf = m.nfields ();

  // Iterating over the list of keys will preserve the order of the
  // fields.
  string_vector keys = m.fieldnames ();

  for (octave_idx_type i = 0; i < nf; i++)
    {
      std::string key = keys(i);

      octave_value val = map.contents (key);

      bool retval2 = add_hdf5_data (data_hid, val, key, "", false,
                                    save_as_floats);

      if (! retval2)
        break;
    }

  H5Gclose (data_hid);

  return true;

#else
  warn_save ("hdf5");
  return false;
#endif
}

bool
octave_struct::load_hdf5 (octave_hdf5_id loc_id, const char *name)
{
  bool retval = false;

#if defined (HAVE_HDF5)

  hdf5_callback_data dsub;

  herr_t retval2 = 0;
  octave_map m (dim_vector (1, 1));
  int current_item = 0;
  hsize_t num_obj = 0;
#if defined (HAVE_HDF5_18)
  hid_t group_id = H5Gopen (loc_id, name, octave_H5P_DEFAULT);
#else
  hid_t group_id = H5Gopen (loc_id, name);
#endif
  H5Gget_num_objs (group_id, &num_obj);
  H5Gclose (group_id);

  // FIXME: fields appear to be sorted alphabetically on loading.
  // Why is that happening?

  while (current_item < static_cast<int> (num_obj)
         && (retval2 = H5Giterate (loc_id, name, &current_item,
                                   hdf5_read_next_data, &dsub)) > 0)
    {
      octave_value t2 = dsub.tc;

      Cell tcell = t2.is_cell () ? t2.xcell_value ("load: internal error loading struct elements") : Cell (t2);

      m.setfield (dsub.name, tcell);

    }

  if (retval2 >= 0)
    {
      map = m;
      retval = true;
    }

#else
  warn_load ("hdf5");
#endif

  return retval;
}

mxArray *
octave_struct::as_mxArray (void) const
{
  int nf = nfields ();
  string_vector kv = map_keys ();

  OCTAVE_LOCAL_BUFFER (const char *, f, nf);

  for (int i = 0; i < nf; i++)
    f[i] = kv[i].c_str ();

  mxArray *retval = new mxArray (dims (), nf, f);

  mxArray **elts = static_cast<mxArray **> (retval->get_data ());

  mwSize nel = numel ();

  mwSize ntot = nf * nel;

  for (int i = 0; i < nf; i++)
    {
      Cell c = map.contents (kv[i]);

      const octave_value *p = c.data ();

      mwIndex k = 0;
      for (mwIndex j = i; j < ntot; j += nf)
        elts[j] = new mxArray (p[k++]);
    }

  return retval;
}

octave_value
octave_struct::fast_elem_extract (octave_idx_type n) const
{
  if (n < map.numel ())
    return map.checkelem (n);
  else
    return octave_value ();
}

bool
octave_struct::fast_elem_insert (octave_idx_type n,
                                 const octave_value& x)
{
  bool retval = false;

  if (n < map.numel ())
    {
      // To avoid copying the scalar struct, it just stores a pointer to
      // itself.
      const octave_scalar_map *sm_ptr;
      void *here = reinterpret_cast<void *>(&sm_ptr);
      return (x.get_rep ().fast_elem_insert_self (here, btyp_struct)
              && map.fast_elem_insert (n, *sm_ptr));
    }

  return retval;
}

DEFINE_OV_TYPEID_FUNCTIONS_AND_DATA(octave_scalar_struct, "scalar struct",
                                    "struct");

octave_value
octave_scalar_struct::dotref (const octave_value_list& idx, bool auto_add)
{
  octave_value retval;

  assert (idx.length () == 1);

  std::string nm = idx(0).string_value ();

  maybe_warn_invalid_field_name (nm, "subsref");

  retval = map.getfield (nm);

  if (! auto_add && retval.is_undefined ())
    error_with_id ("Octave:invalid-indexing",
                   "structure has no member '%s'", nm.c_str ());

  return retval;
}

octave_value
octave_scalar_struct::subsref (const std::string& type,
                               const std::list<octave_value_list>& idx)
{
  octave_value retval;

  if (type[0] == '.')
    {
      int skip = 1;

      retval = dotref (idx.front ());

      if (idx.size () > 1)
        retval = retval.next_subsref (type, idx, skip);
    }
  else
    retval = to_array ().subsref (type, idx);

  return retval;
}

octave_value_list
octave_scalar_struct::subsref (const std::string& type,
                               const std::list<octave_value_list>& idx,
                               int nargout)
{
  octave_value_list retval;

  if (type[0] == '.')
    {
      int skip = 1;

      retval(0) = dotref (idx.front ());

      if (idx.size () > 1)
        retval = retval(0).next_subsref (nargout, type, idx, skip);
    }
  else
    retval = to_array ().subsref (type, idx, nargout);

  return retval;
}

octave_value
octave_scalar_struct::subsref (const std::string& type,
                               const std::list<octave_value_list>& idx,
                               bool auto_add)
{
  octave_value retval;

  if (type[0] == '.')
    {
      int skip = 1;

      retval = dotref (idx.front (), auto_add);

      if (idx.size () > 1)
        retval = retval.next_subsref (auto_add, type, idx, skip);
    }
  else
    retval = to_array ().subsref (type, idx, auto_add);

  return retval;
}

/*
%!test
%! x(1).a.a = 1;
%! x(2).a.a = 2;
%! assert (size (x), [1, 2]);
%! assert (x(1).a.a, 1);
%! assert (x(2).a.a, 2);
*/

octave_value
octave_scalar_struct::numeric_conv (const octave_value& val,
                                    const std::string& type)
{
  octave_value retval;

  if (type.length () > 0 && type[0] == '.' && ! val.is_map ())
    retval = octave_map ();
  else
    retval = val;

  return retval;
}

octave_value
octave_scalar_struct::subsasgn (const std::string& type,
                                const std::list<octave_value_list>& idx,
                                const octave_value& rhs)
{
  octave_value retval;

  if (idx.front ().empty ())
    error ("missing index in indexed assignment");

  if (type[0] == '.')
    {
      int n = type.length ();

      octave_value t_rhs = rhs;

      octave_value_list key_idx = idx.front ();

      assert (key_idx.length () == 1);

      std::string key = key_idx(0).string_value ();

      maybe_warn_invalid_field_name (key, "subsasgn");

      if (n > 1)
        {
          std::list<octave_value_list> next_idx (idx);

          next_idx.erase (next_idx.begin ());

          std::string next_type = type.substr (1);

          octave_value tmp;
          octave_map::iterator pkey = map.seek (key);
          if (pkey != map.end ())
            {
              map.contents (pkey).make_unique ();
              tmp = map.contents (pkey);
            }

          bool orig_undefined = tmp.is_undefined ();

          if (orig_undefined || tmp.is_zero_by_zero ())
            {
              tmp = octave_value::empty_conv (next_type, rhs);
              tmp.make_unique (); // probably a no-op.
            }
          else
            // optimization: ignore the copy still stored inside our map.
            tmp.make_unique (1);

          t_rhs = (orig_undefined
                   ? tmp.undef_subsasgn (next_type, next_idx, rhs)
                   : tmp.subsasgn (next_type, next_idx, rhs));
        }

      map.setfield (key, t_rhs.storable_value ());

      count++;
      retval = this;
    }
  else
    {
      // Forward this case to octave_struct.
      octave_value tmp (new octave_struct (octave_map (map)));
      retval = tmp.subsasgn (type, idx, rhs);
    }

  return retval;
}

octave_value
octave_scalar_struct::do_index_op (const octave_value_list& idx, bool resize_ok)
{
  // octave_map handles indexing itself.
  return octave_map (map).index (idx, resize_ok);
}

size_t
octave_scalar_struct::byte_size (void) const
{
  // Neglect the size of the fieldnames.

  size_t retval = 0;

  for (octave_map::const_iterator p = map.begin (); p != map.end (); p++)
    {
      std::string key = map.key (p);

      octave_value val = octave_value (map.contents (p));

      retval += val.byte_size ();
    }

  return retval;
}

void
octave_scalar_struct::print (std::ostream& os, bool)
{
  print_raw (os);
}

void
octave_scalar_struct::print_raw (std::ostream& os, bool) const
{
  unwind_protect frame;

  frame.protect_var (Vstruct_levels_to_print);

  if (Vstruct_levels_to_print >= 0)
    {
      bool max_depth_reached = Vstruct_levels_to_print-- == 0;

      bool print_fieldnames_only = max_depth_reached;

      increment_indent_level ();

      if (! Vcompact_format)
        newline (os);

      indent (os);
      os << "scalar structure containing the fields:";
      newline (os);
      if (! Vcompact_format)
        newline (os);

      increment_indent_level ();

      string_vector key_list = map.fieldnames ();

      for (octave_idx_type i = 0; i < key_list.numel (); i++)
        {
          std::string key = key_list[i];

          octave_value val = map.contents (key);

          if (print_fieldnames_only)
            {
              indent (os);
              os << key;
              dim_vector dv = val.dims ();
              os << ": " << dv.str () << " " << val.type_name ();
              newline (os);
            }
          else
            val.print_with_name (os, key);
        }

      decrement_indent_level ();
      decrement_indent_level ();
    }
  else
    {
      indent (os);
      os << "<structure>";
      newline (os);
    }
}

bool
octave_scalar_struct::print_name_tag (std::ostream& os,
                                      const std::string& name) const
{
  bool retval = false;

  indent (os);

  if (Vstruct_levels_to_print < 0)
    os << name << " = ";
  else
    {
      os << name << " =";
      newline (os);
      retval = true;
    }

  return retval;
}

bool
octave_scalar_struct::save_ascii (std::ostream& os)
{
  octave_map m = map_value ();

  octave_idx_type nf = m.nfields ();

  const dim_vector dv = dims ();

  os << "# ndims: " << dv.length () << "\n";

  for (int i = 0; i < dv.length (); i++)
    os << " " << dv(i);
  os << "\n";

  os << "# length: " << nf << "\n";

  // Iterating over the list of keys will preserve the order of the
  // fields.
  string_vector keys = m.fieldnames ();

  for (octave_idx_type i = 0; i < nf; i++)
    {
      std::string key = keys(i);

      octave_value val = map.contents (key);

      bool b = save_text_data (os, val, key, false, 0);

      if (! b)
        return ! os.fail ();
    }

  return true;
}

bool
octave_scalar_struct::load_ascii (std::istream& is)
{
  octave_idx_type len = 0;

  if (! extract_keyword (is, "length", len) || len < 0)
    error ("load: failed to extract number of elements in structure");

  if (len > 0)
    {
      octave_scalar_map m;

      for (octave_idx_type j = 0; j < len; j++)
        {
          octave_value t2;
          bool dummy;

          // recurse to read cell elements
          std::string nm
            = read_text_data (is, "", dummy, t2, j);

          if (! is)
            break;

          m.setfield (nm, t2);
        }

      if (! is)
        error ("load: failed to load structure");

      map = m;
    }
  else if (len == 0)
    map = octave_scalar_map ();
  else
    panic_impossible ();

  return true;
}

bool
octave_scalar_struct::save_binary (std::ostream& os, bool& save_as_floats)
{
  octave_map m = map_value ();

  octave_idx_type nf = m.nfields ();

  int32_t len = nf;
  os.write (reinterpret_cast<char *> (&len), 4);

  // Iterating over the list of keys will preserve the order of the
  // fields.
  string_vector keys = m.fieldnames ();

  for (octave_idx_type i = 0; i < nf; i++)
    {
      std::string key = keys(i);

      octave_value val = map.contents (key);

      bool b = save_binary_data (os, val, key, "", 0, save_as_floats);

      if (! b)
        return ! os.fail ();
    }

  return true;
}

bool
octave_scalar_struct::load_binary (std::istream& is, bool swap,
                                   oct_mach_info::float_format fmt)
{
  bool success = true;
  int32_t len;
  if (! is.read (reinterpret_cast<char *> (&len), 4))
    return false;
  if (swap)
    swap_bytes<4> (&len);

  if (len > 0)
    {
      octave_scalar_map m;

      for (octave_idx_type j = 0; j < len; j++)
        {
          octave_value t2;
          bool dummy;
          std::string doc;

          // recurse to read cell elements
          std::string nm = read_binary_data (is, swap, fmt, "",
                                             dummy, t2, doc);

          if (! is)
            break;

          m.setfield (nm, t2);
        }

      if (! is)
        error ("load: failed to load structure");

      map = m;
    }
  else if (len == 0)
    map = octave_scalar_map ();
  else
    success = false;

  return success;
}

bool
octave_scalar_struct::save_hdf5 (octave_hdf5_id loc_id, const char *name,
                                 bool save_as_floats)
{
#if defined (HAVE_HDF5)

  hid_t data_hid = -1;

#if defined (HAVE_HDF5_18)
  data_hid = H5Gcreate (loc_id, name, octave_H5P_DEFAULT, octave_H5P_DEFAULT, octave_H5P_DEFAULT);
#else
  data_hid = H5Gcreate (loc_id, name, 0);
#endif
  if (data_hid < 0) return false;

  // recursively add each element of the structure to this group
  octave_scalar_map m = scalar_map_value ();

  octave_idx_type nf = m.nfields ();

  // Iterating over the list of keys will preserve the order of the
  // fields.
  string_vector keys = m.fieldnames ();

  for (octave_idx_type i = 0; i < nf; i++)
    {
      std::string key = keys(i);

      octave_value val = map.contents (key);

      bool retval2 = add_hdf5_data (data_hid, val, key, "", false,
                                    save_as_floats);

      if (! retval2)
        break;
    }

  H5Gclose (data_hid);

  return true;

#else
  warn_save ("hdf5");
  return false;
#endif
}

bool
octave_scalar_struct::load_hdf5 (octave_hdf5_id loc_id, const char *name)
{
  bool retval = false;

#if defined (HAVE_HDF5)

  hdf5_callback_data dsub;

  herr_t retval2 = 0;
  octave_scalar_map m;
  int current_item = 0;
  hsize_t num_obj = 0;
#if defined (HAVE_HDF5_18)
  hid_t group_id = H5Gopen (loc_id, name, octave_H5P_DEFAULT);
#else
  hid_t group_id = H5Gopen (loc_id, name);
#endif
  H5Gget_num_objs (group_id, &num_obj);
  H5Gclose (group_id);

  // FIXME: fields appear to be sorted alphabetically on loading.
  // Why is that happening?

  while (current_item < static_cast<int> (num_obj)
         && (retval2 = H5Giterate (loc_id, name, &current_item,
                                   hdf5_read_next_data, &dsub)) > 0)
    {
      octave_value t2 = dsub.tc;

      m.setfield (dsub.name, t2);

    }

  if (retval2 >= 0)
    {
      map = m;
      retval = true;
    }

#else
  warn_load ("hdf5");
#endif

  return retval;
}

mxArray *
octave_scalar_struct::as_mxArray (void) const
{
  int nf = nfields ();
  string_vector kv = map_keys ();

  OCTAVE_LOCAL_BUFFER (const char *, f, nf);

  for (int i = 0; i < nf; i++)
    f[i] = kv[i].c_str ();

  mxArray *retval = new mxArray (dims (), nf, f);

  mxArray **elts = static_cast<mxArray **> (retval->get_data ());

  mwSize nel = numel ();

  mwSize ntot = nf * nel;

  for (int i = 0; i < nf; i++)
    {
      Cell c = map.contents (kv[i]);

      const octave_value *p = c.data ();

      mwIndex k = 0;
      for (mwIndex j = i; j < ntot; j += nf)
        elts[j] = new mxArray (p[k++]);
    }

  return retval;
}


octave_value
octave_scalar_struct::to_array (void)
{
  return new octave_struct (octave_map (map));
}

bool
octave_scalar_struct::fast_elem_insert_self (void *where,
                                             builtin_type_t btyp) const
{

  if (btyp == btyp_struct)
    {
      *(reinterpret_cast<const octave_scalar_map **>(where)) = &map;
      return true;
    }
  else
    return false;
}

DEFUN (struct, args, ,
       "-*- texinfo -*-\n\
@deftypefn  {} {@var{s} =} struct ()\n\
@deftypefnx {} {@var{s} =} struct (@var{field1}, @var{value1}, @var{field2}, @var{value2}, @dots{})\n\
@deftypefnx {} {@var{s} =} struct (@var{obj})\n\
\n\
Create a scalar or array structure and initialize its values.\n\
\n\
The @var{field1}, @var{field2}, @dots{} variables are strings specifying the\n\
names of the fields and the @var{value1}, @var{value2}, @dots{} variables\n\
can be of any type.\n\
\n\
If the values are cell arrays, create a structure array and initialize its\n\
values.  The dimensions of each cell array of values must match.  Singleton\n\
cells and non-cell values are repeated so that they fill the entire array. \n\
If the cells are empty, create an empty structure array with the specified\n\
field names.\n\
\n\
If the argument is an object, return the underlying struct.\n\
\n\
Observe that the syntax is optimized for struct @strong{arrays}.  Consider\n\
the following examples:\n\
\n\
@example\n\
@group\n\
struct (\"foo\", 1)\n\
  @result{} scalar structure containing the fields:\n\
    foo =  1\n\
\n\
struct (\"foo\", @{@})\n\
  @result{} 0x0 struct array containing the fields:\n\
    foo\n\
\n\
struct (\"foo\", @{ @{@} @})\n\
  @result{} scalar structure containing the fields:\n\
    foo = @{@}(0x0)\n\
\n\
struct (\"foo\", @{1, 2, 3@})\n\
  @result{} 1x3 struct array containing the fields:\n\
    foo\n\
\n\
@end group\n\
@end example\n\
\n\
@noindent\n\
The first case is an ordinary scalar struct---one field, one value.  The\n\
second produces an empty struct array with one field and no values, since\n\
being passed an empty cell array of struct array values.  When the value is\n\
a cell array containing a single entry, this becomes a scalar struct with\n\
that single entry as the value of the field.  That single entry happens\n\
to be an empty cell array.\n\
\n\
Finally, if the value is a non-scalar cell array, then @code{struct}\n\
produces a struct @strong{array}.\n\
@seealso{cell2struct, fieldnames, getfield, setfield, rmfield, isfield, orderfields, isstruct, structfun}\n\
@end deftypefn")
{
  int nargin = args.length ();

  // struct ([]) returns an empty struct.

  // struct (empty_matrix) returns an empty struct with the same
  // dimensions as the empty matrix.

  // Note that struct () creates a 1x1 struct with no fields for
  // compatibility with Matlab.

  if (nargin == 1 && args(0).is_map ())
    return ovl (args(0));

  if (nargin == 1 && args(0).is_object ())
    return ovl (args(0).map_value ());

  if ((nargin == 1 || nargin == 2)
      && args(0).is_empty () && args(0).is_real_matrix ())
    {
      if (nargin == 2)
        {
          Array<std::string> cstr = args(1).xcellstr_value ("struct: second argument should be a cell array of field names");

          return ovl (octave_map (args(0).dims (), cstr));
        }
      else
        return ovl (octave_map (args(0).dims ()));
    }

  // Check for "field", VALUE pairs.

  for (int i = 0; i < nargin; i += 2)
    {
      if (! args(i).is_string () || i + 1 >= nargin)
        error ("struct: additional arguments must occur as \"field\", VALUE pairs");
    }

  // Check that the dimensions of the values correspond.

  dim_vector dims (1, 1);

  int first_dimensioned_value = 0;

  for (int i = 1; i < nargin; i += 2)
    {
      if (args(i).is_cell ())
        {
          dim_vector argdims (args(i).dims ());

          if (! scalar (argdims))
            {
              if (! first_dimensioned_value)
                {
                  dims = argdims;
                  first_dimensioned_value = i + 1;
                }
              else if (dims != argdims)
                {
                  error ("struct: dimensions of parameter %d "
                         "do not match those of parameter %d",
                         first_dimensioned_value, i+1);
                }
            }
        }
    }

  // Create the return value.

  octave_map map (dims);

  for (int i = 0; i < nargin; i+= 2)
    {
      // Get key.

      std::string key (args(i).string_value ());

      maybe_warn_invalid_field_name (key, "struct");

      // Value may be v, { v }, or { v1, v2, ... }
      // In the first two cases, we need to create a cell array of
      // the appropriate dimensions filled with v.  In the last case,
      // the cell array has already been determined to be of the
      // correct dimensions.

      if (args(i+1).is_cell ())
        {
          const Cell c (args(i+1).cell_value ());

          if (scalar (c.dims ()))
            map.setfield (key, Cell (dims, c(0)));
          else
            map.setfield (key, c);
        }
      else
        map.setfield (key, Cell (dims, args(i+1)));
    }

  return ovl (map);
}

/*
%!shared x
%! x(1).a=1;  x(2).a=2;  x(1).b=3;  x(2).b=3;
%!assert (struct ("a",1, "b",3), x(1))
%!assert (isempty (x([])))
%!assert (isempty (struct ("a",{}, "b",{})))
%!assert (struct ("a",{1,2}, "b",{3,3}), x)
%!assert (struct ("a",{1,2}, "b",3), x)
%!assert (struct ("a",{1,2}, "b",{3}), x)
%!assert (struct ("b",3, "a",{1,2}), x)
%!assert (struct ("b",{3}, "a",{1,2}), x)
%!test x = struct ([]);
%!assert (size (x), [0,0])
%!assert (isstruct (x))
%!assert (isempty (fieldnames (x)))
%!fail ('struct ("a",{1,2},"b",{1,2,3})', 'dimensions of parameter 2 do not match those of parameter 4')
%!error <arguments must occur as "field", VALUE pairs> struct (1,2,3,4)
%!fail ('struct ("1",2,"3")', 'struct: additional arguments must occur as "field", VALUE pairs')
*/

DEFUN (isstruct, args, ,
       "-*- texinfo -*-\n\
@deftypefn {} {} isstruct (@var{x})\n\
Return true if @var{x} is a structure or a structure array.\n\
@seealso{ismatrix, iscell, isa}\n\
@end deftypefn")
{
  if (args.length () != 1)
    print_usage ();

  return ovl (args(0).is_map ());
}

DEFUN (__fieldnames__, args, ,
       "-*- texinfo -*-\n\
@deftypefn  {} {} __fieldnames__ (@var{struct})\n\
@deftypefnx {} {} __fieldnames__ (@var{obj})\n\
Internal function.\n\
\n\
Implements @code{fieldnames()} for structures and Octave objects.\n\
@seealso{fieldnames}\n\
@end deftypefn")
{
  octave_value retval;

  // Input validation has already been done in fieldnames.m.
  octave_value arg = args(0);

  octave_map m = arg.map_value ();

  string_vector keys = m.fieldnames ();

  if (keys.is_empty ())
    retval = Cell (0, 1);
  else
    retval = Cell (keys);

  return retval;
}

DEFUN (isfield, args, ,
       "-*- texinfo -*-\n\
@deftypefn  {} {} isfield (@var{x}, \"@var{name}\")\n\
@deftypefnx {} {} isfield (@var{x}, @var{name})\n\
Return true if the @var{x} is a structure and it includes an element named\n\
@var{name}.\n\
\n\
If @var{name} is a cell array of strings then a logical array of equal\n\
dimension is returned.\n\
@seealso{fieldnames}\n\
@end deftypefn")
{
  if (args.length () != 2)
    print_usage ();

  octave_value retval = false;

  if (args(0).is_map ())
    {
      octave_map m = args(0).map_value ();

      // FIXME: should this work for all types that can do
      // structure reference operations?
      if (args(1).is_string ())
        {
          std::string key = args(1).string_value ();

          retval = m.isfield (key);
        }
      else if (args(1).is_cell ())
        {
          Cell c = args(1).cell_value ();
          boolNDArray bm (c.dims ());
          octave_idx_type n = bm.numel ();

          for (octave_idx_type i = 0; i < n; i++)
            {
              if (c(i).is_string ())
                {
                  std::string key = c(i).string_value ();

                  bm(i) = m.isfield (key);
                }
              else
                bm(i) = false;
            }

          retval = bm;
        }
    }

  return retval;
}

DEFUN (numfields, args, ,
       "-*- texinfo -*-\n\
@deftypefn {} {} numfields (@var{s})\n\
Return the number of fields of the structure @var{s}.\n\
@seealso{fieldnames}\n\
@end deftypefn")
{
  if (args.length () != 1)
    print_usage ();

  if (! args(0).is_map ())
    error ("numfields: argument must be a struct");

  return ovl (static_cast<double> (args(0).nfields ()));
}

/*
## test isfield
%!test
%! x(3).d=1;  x(2).a=2;  x(1).b=3;  x(2).c=3;
%! assert (isfield (x, "b"));
%!assert (isfield (struct ("a", "1"), "a"))
%!assert (isfield ({1}, "c"), false)
%!assert (isfield (struct ("a", "1"), 10), false)
%!assert (isfield (struct ("a", "b"), "a "), false)
%!assert (isfield (struct ("a", 1, "b", 2), {"a", "c"}), [true, false])
*/

DEFUN (cell2struct, args, ,
       "-*- texinfo -*-\n\
@deftypefn  {} {} cell2struct (@var{cell}, @var{fields})\n\
@deftypefnx {} {} cell2struct (@var{cell}, @var{fields}, @var{dim})\n\
Convert @var{cell} to a structure.\n\
\n\
The number of fields in @var{fields} must match the number of elements in\n\
@var{cell} along dimension @var{dim}, that is\n\
@code{numel (@var{fields}) == size (@var{cell}, @var{dim})}.  If @var{dim}\n\
is omitted, a value of 1 is assumed.\n\
\n\
@example\n\
@group\n\
A = cell2struct (@{\"Peter\", \"Hannah\", \"Robert\";\n\
                   185, 170, 168@},\n\
                 @{\"Name\",\"Height\"@}, 1);\n\
A(1)\n\
   @result{}\n\
      @{\n\
        Name   = Peter\n\
        Height = 185\n\
      @}\n\
\n\
@end group\n\
@end example\n\
@seealso{struct2cell, cell2mat, struct}\n\
@end deftypefn")
{
  int nargin = args.length ();

  if (nargin < 2 || nargin > 3)
    print_usage ();

  if (! args(0).is_cell ())
    error ("cell2struct: argument CELL must be of type cell");

  if (! (args(1).is_cellstr () || args(1).is_char_matrix ()))
    error ("cell2struct: FIELDS must be a cell array of strings or a character matrix");

  int dim = 0;

  if (nargin == 3)
    {
      if (! args(2).is_real_scalar ())
        error ("cell2struct: DIM must be a real scalar");

      dim = nargin == 2 ? 0 : args(2).int_value () - 1;
    }

  if (dim < 0)
    error ("cell2struct: DIM must be a valid dimension");

  const Cell vals = args(0).cell_value ();
  const Array<std::string> fields = args(1).cellstr_value ();

  octave_idx_type ext = vals.ndims () > dim ? vals.dims ()(dim) : 1;

  if (ext != fields.numel ())
    error ("cell2struct: number of FIELDS does not match dimension");

  int nd = std::max (dim+1, vals.ndims ());
  // result dimensions.
  dim_vector rdv = vals.dims ().redim (nd);

  assert (ext == rdv(dim));
  if (nd == 2)
    {
      rdv(0) = rdv(1-dim);
      rdv(1) = 1;
    }
  else
    {
      for (int i =  dim + 1; i < nd; i++)
        rdv(i-1) = rdv(i);

      rdv.resize (nd-1);
    }

  octave_map map (rdv);
  Array<idx_vector> ia (dim_vector (nd, 1), idx_vector::colon);

  for (octave_idx_type i = 0; i < ext; i++)
    {
      ia(dim) = i;
      map.setfield (fields(i), vals.index (ia).reshape (rdv));
    }

  return ovl (map);
}

/*
## test cell2struct versus struct2cell
%!test
%! keys = cellstr (char (floor (rand (100,10)*24+65)))';
%! vals = mat2cell (rand (100,1), ones (100,1), 1)';
%! s = struct ([keys; vals]{:});
%! t = cell2struct (vals, keys, 2);
%! assert (s, t);
%! assert (struct2cell (s), vals');
%! assert (fieldnames (s), keys');

%!assert (cell2struct ({1; 2}, {"a"; "b"}), struct ("a", 1, "b", 2));

%!assert (cell2struct ({}, {"f"}, 3), struct ("f", {}));
*/

// FIXME: we should be including builtin-defun-decls.h but doing that
// currently exposes a problem with dependencies in the the build system.
extern OCTINTERP_API octave_value_list
Fcellstr (const octave_value_list& = octave_value_list (), int = 0);

DEFUN (rmfield, args, ,
       "-*- texinfo -*-\n\
@deftypefn  {} {@var{sout} =} rmfield (@var{s}, \"@var{f}\")\n\
@deftypefnx {} {@var{sout} =} rmfield (@var{s}, @var{f})\n\
Return a @emph{copy} of the structure (array) @var{s} with the field @var{f}\n\
removed.\n\
\n\
If @var{f} is a cell array of strings or a character array, remove each of\n\
the named fields.\n\
@seealso{orderfields, fieldnames, isfield}\n\
@end deftypefn")
{
  if (args.length () != 2)
    print_usage ();

  octave_map m = args(0).xmap_value ("rmfield: first argument must be a struct");

  octave_value_list fval = Fcellstr (args(1), 1);

  Cell fcell = fval(0).cell_value ();

  for (int i = 0; i < fcell.numel (); i++)
    {
      std::string key = fcell(i).string_value ();

      if (! m.isfield (key))
        error ("rmfield: structure does not contain field %s", key.c_str ());

      m.rmfield (key);
    }

  return ovl (m);
}

/*
## test rmfield
%!shared x
%! x(3).d=1;  x(2).a=2;  x(1).b=3;  x(2).c=3;  x(6).f="abc123";
%!
%!test
%! y = rmfield (x, "c");
%! assert (fieldnames (y), {"d"; "a"; "b"; "f"});
%! assert (size (y), [1, 6]);
%!test
%! y = rmfield (x, {"a", "f"});
%! assert (fieldnames (y), {"d"; "b"; "c"});
%! assert (size (y), [1, 6]);
*/

DEFUN (struct_levels_to_print, args, nargout,
       "-*- texinfo -*-\n\
@deftypefn  {} {@var{val} =} struct_levels_to_print ()\n\
@deftypefnx {} {@var{old_val} =} struct_levels_to_print (@var{new_val})\n\
@deftypefnx {} {} struct_levels_to_print (@var{new_val}, \"local\")\n\
Query or set the internal variable that specifies the number of\n\
structure levels to display.\n\
\n\
When called from inside a function with the @qcode{\"local\"} option, the\n\
variable is changed locally for the function and any subroutines it calls.\n\
The original variable value is restored when exiting the function.\n\
@seealso{print_struct_array_contents}\n\
@end deftypefn")
{
  return SET_INTERNAL_VARIABLE_WITH_LIMITS (struct_levels_to_print, -1,
                                            std::numeric_limits<int>::max ());
}

DEFUN (print_struct_array_contents, args, nargout,
       "-*- texinfo -*-\n\
@deftypefn  {} {@var{val} =} print_struct_array_contents ()\n\
@deftypefnx {} {@var{old_val} =} print_struct_array_contents (@var{new_val})\n\
@deftypefnx {} {} print_struct_array_contents (@var{new_val}, \"local\")\n\
Query or set the internal variable that specifies whether to print struct\n\
array contents.\n\
\n\
If true, values of struct array elements are printed.  This variable does\n\
not affect scalar structures whose elements are always printed.  In both\n\
cases, however, printing will be limited to the number of levels specified\n\
by @var{struct_levels_to_print}.\n\
\n\
When called from inside a function with the @qcode{\"local\"} option, the\n\
variable is changed locally for the function and any subroutines it calls.\n\
The original variable value is restored when exiting the function.\n\
@seealso{struct_levels_to_print}\n\
@end deftypefn")
{
  return SET_INTERNAL_VARIABLE (print_struct_array_contents);
}