view libinterp/octave-value/ov-cx-diag.cc @ 28240:2fb684dc2ec2

axis.m: Implement "fill" option for Matlab compatibility. * axis.m: Document that "fill" is a synonym for "normal". Place "vis3d" option in documentation table for modes which affect aspect ratio. Add strcmpi (opt, "fill") to decode opt and executed the same behavior as "normal".
author Rik <rik@octave.org>
date Fri, 24 Apr 2020 13:16:09 -0700
parents bd51beb6205e
children 0a5b15007766
line wrap: on
line source

////////////////////////////////////////////////////////////////////////
//
// Copyright (C) 2008-2020 The Octave Project Developers
//
// See the file COPYRIGHT.md in the top-level directory of this
// distribution or <https://octave.org/copyright/>.
//
// This file is part of Octave.
//
// Octave is free software: you can redistribute it and/or modify it
// under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// Octave is distributed in the hope that it will be useful, but
// WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with Octave; see the file COPYING.  If not, see
// <https://www.gnu.org/licenses/>.
//
////////////////////////////////////////////////////////////////////////

#if defined (HAVE_CONFIG_H)
#  include "config.h"
#endif

#include "byte-swap.h"

#include "ov-cx-diag.h"
#include "ov-flt-cx-diag.h"
#include "ov-re-diag.h"
#include "ov-base-diag.cc"
#include "ov-complex.h"
#include "ov-cx-mat.h"
#include "ls-utils.h"


template class octave_base_diag<ComplexDiagMatrix, ComplexMatrix>;

DEFINE_OV_TYPEID_FUNCTIONS_AND_DATA (octave_complex_diag_matrix,
                                     "complex diagonal matrix", "double");

static octave_base_value *
default_numeric_conversion_function (const octave_base_value& a)
{
  const octave_complex_diag_matrix& v
    = dynamic_cast<const octave_complex_diag_matrix&> (a);

  return new octave_complex_matrix (v.complex_matrix_value ());
}

octave_base_value::type_conv_info
octave_complex_diag_matrix::numeric_conversion_function (void) const
{
  return octave_base_value::type_conv_info
           (default_numeric_conversion_function,
            octave_complex_matrix::static_type_id ());
}

static octave_base_value *
default_numeric_demotion_function (const octave_base_value& a)
{
  const octave_complex_diag_matrix& v
    = dynamic_cast<const octave_complex_diag_matrix&> (a);

  return new octave_float_complex_diag_matrix
               (v.float_complex_diag_matrix_value ());
}

octave_base_value::type_conv_info
octave_complex_diag_matrix::numeric_demotion_function (void) const
{
  return
    octave_base_value::type_conv_info (default_numeric_demotion_function,
                                       octave_float_complex_diag_matrix::static_type_id ());
}

octave_base_value *
octave_complex_diag_matrix::try_narrowing_conversion (void)
{
  octave_base_value *retval = nullptr;

  if (matrix.nelem () == 1)
    {
      retval = new octave_complex (matrix (0, 0));
      octave_base_value *rv2 = retval->try_narrowing_conversion ();
      if (rv2)
        {
          delete retval;
          retval = rv2;
        }
    }
  else if (matrix.all_elements_are_real ())
    {
      return new octave_diag_matrix (::real (matrix));
    }

  return retval;
}

DiagMatrix
octave_complex_diag_matrix::diag_matrix_value (bool force_conversion) const
{
  DiagMatrix retval;

  if (! force_conversion)
    warn_implicit_conversion ("Octave:imag-to-real",
                              type_name (), "real matrix");

  retval = ::real (matrix);

  return retval;
}

FloatDiagMatrix
octave_complex_diag_matrix::float_diag_matrix_value (bool force_conversion) const
{
  DiagMatrix retval;

  if (! force_conversion)
    warn_implicit_conversion ("Octave:imag-to-real",
                              type_name (), "real matrix");

  retval = ::real (matrix);

  return retval;
}

ComplexDiagMatrix
octave_complex_diag_matrix::complex_diag_matrix_value (bool) const
{
  return matrix;
}

FloatComplexDiagMatrix
octave_complex_diag_matrix::float_complex_diag_matrix_value (bool) const
{
  return FloatComplexDiagMatrix (matrix);
}

octave_value
octave_complex_diag_matrix::as_double (void) const
{
  return matrix;
}

octave_value
octave_complex_diag_matrix::as_single (void) const
{
  return FloatComplexDiagMatrix (matrix);
}

octave_value
octave_complex_diag_matrix::map (unary_mapper_t umap) const
{
  switch (umap)
    {
    case umap_abs:
      return matrix.abs ();
    case umap_real:
      return ::real (matrix);
    case umap_conj:
      return ::conj (matrix);
    case umap_imag:
      return ::imag (matrix);
    case umap_sqrt:
      {
        ComplexColumnVector tmp
          = matrix.extract_diag ().map<Complex> (std::sqrt);
        ComplexDiagMatrix retval (tmp);
        retval.resize (matrix.rows (), matrix.columns ());
        return retval;
      }
    default:
      return to_dense ().map (umap);
    }
}

bool
octave_complex_diag_matrix::save_binary (std::ostream& os, bool save_as_floats)
{

  int32_t r = matrix.rows ();
  int32_t c = matrix.cols ();
  os.write (reinterpret_cast<char *> (&r), 4);
  os.write (reinterpret_cast<char *> (&c), 4);

  ComplexMatrix m = ComplexMatrix (matrix.extract_diag ());
  save_type st = LS_DOUBLE;
  if (save_as_floats)
    {
      if (m.too_large_for_float ())
        {
          warning ("save: some values too large to save as floats --");
          warning ("save: saving as doubles instead");
        }
      else
        st = LS_FLOAT;
    }
  else if (matrix.length () > 4096) // FIXME: make this configurable.
    {
      double max_val, min_val;
      if (m.all_integers (max_val, min_val))
        st = get_save_type (max_val, min_val);
    }

  const Complex *mtmp = m.data ();
  write_doubles (os, reinterpret_cast<const double *> (mtmp), st,
                 2 * m.numel ());

  return true;
}

bool
octave_complex_diag_matrix::load_binary (std::istream& is, bool swap,
                                         octave::mach_info::float_format fmt)
{
  int32_t r, c;
  char tmp;
  if (! (is.read (reinterpret_cast<char *> (&r), 4)
         && is.read (reinterpret_cast<char *> (&c), 4)
         && is.read (reinterpret_cast<char *> (&tmp), 1)))
    return false;
  if (swap)
    {
      swap_bytes<4> (&r);
      swap_bytes<4> (&c);
    }

  ComplexDiagMatrix m (r, c);
  Complex *im = m.fortran_vec ();
  octave_idx_type len = m.length ();
  read_doubles (is, reinterpret_cast<double *> (im),
                static_cast<save_type> (tmp), 2 * len, swap, fmt);

  if (! is)
    return false;

  matrix = m;

  return true;
}

bool
octave_complex_diag_matrix::chk_valid_scalar (const octave_value& val,
                                              Complex& x) const
{
  bool retval = val.is_complex_scalar () || val.is_real_scalar ();
  if (retval)
    x = val.complex_value ();
  return retval;
}

/*
%!assert <*36368> (diag ([1+i, 1-i])^2 , diag ([2i, -2i]), 4*eps)
*/