view libinterp/octave-value/ov-cx-mat.cc @ 28240:2fb684dc2ec2

axis.m: Implement "fill" option for Matlab compatibility. * axis.m: Document that "fill" is a synonym for "normal". Place "vis3d" option in documentation table for modes which affect aspect ratio. Add strcmpi (opt, "fill") to decode opt and executed the same behavior as "normal".
author Rik <rik@octave.org>
date Fri, 24 Apr 2020 13:16:09 -0700
parents 4c21f99b4ad5
children 7854d5752dd2
line wrap: on
line source

////////////////////////////////////////////////////////////////////////
//
// Copyright (C) 1996-2020 The Octave Project Developers
//
// See the file COPYRIGHT.md in the top-level directory of this
// distribution or <https://octave.org/copyright/>.
//
// This file is part of Octave.
//
// Octave is free software: you can redistribute it and/or modify it
// under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// Octave is distributed in the hope that it will be useful, but
// WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with Octave; see the file COPYING.  If not, see
// <https://www.gnu.org/licenses/>.
//
////////////////////////////////////////////////////////////////////////

#if defined (HAVE_CONFIG_H)
#  include "config.h"
#endif

#include <istream>
#include <ostream>
#include <vector>

#include "dNDArray.h"
#include "fNDArray.h"

#include "data-conv.h"
#include "lo-ieee.h"
#include "lo-specfun.h"
#include "lo-mappers.h"
#include "mx-base.h"
#include "mach-info.h"
#include "oct-locbuf.h"

#include "errwarn.h"
#include "mxarray.h"
#include "ovl.h"
#include "oct-hdf5.h"
#include "oct-stream.h"
#include "ops.h"
#include "ov-base.h"
#include "ov-base-mat.h"
#include "ov-base-mat.cc"
#include "ov-complex.h"
#include "ov-cx-mat.h"
#include "ov-flt-cx-mat.h"
#include "ov-re-mat.h"
#include "ov-scalar.h"
#include "pr-output.h"

#include "byte-swap.h"
#include "ls-oct-text.h"
#include "ls-hdf5.h"
#include "ls-utils.h"


template class octave_base_matrix<ComplexNDArray>;

DEFINE_OV_TYPEID_FUNCTIONS_AND_DATA (octave_complex_matrix,
                                     "complex matrix", "double");

static octave_base_value *
default_numeric_demotion_function (const octave_base_value& a)
{
  const octave_complex_matrix& v = dynamic_cast<const octave_complex_matrix&> (a);

  return new octave_float_complex_matrix (v.float_complex_array_value ());
}

octave_base_value::type_conv_info
octave_complex_matrix::numeric_demotion_function (void) const
{
  return octave_base_value::type_conv_info
           (default_numeric_demotion_function,
            octave_float_complex_matrix::static_type_id ());
}

octave_base_value *
octave_complex_matrix::try_narrowing_conversion (void)
{
  octave_base_value *retval = nullptr;

  if (matrix.numel () == 1)
    {
      Complex c = matrix (0);

      if (c.imag () == 0.0)
        retval = new octave_scalar (c.real ());
      else
        retval = new octave_complex (c);
    }
  else if (matrix.all_elements_are_real ())
    retval = new octave_matrix (::real (matrix));

  return retval;
}

double
octave_complex_matrix::double_value (bool force_conversion) const
{
  if (! force_conversion)
    warn_implicit_conversion ("Octave:imag-to-real",
                              "complex matrix", "real scalar");

  if (rows () == 0 || columns () == 0)
    err_invalid_conversion ("complex matrix", "real scalar");

  warn_implicit_conversion ("Octave:array-to-scalar",
                            "complex matrix", "real scalar");

  return std::real (matrix(0, 0));
}

float
octave_complex_matrix::float_value (bool force_conversion) const
{
  if (! force_conversion)
    warn_implicit_conversion ("Octave:imag-to-real",
                              "complex matrix", "real scalar");

  if (rows () == 0 || columns () == 0)
    err_invalid_conversion ("complex matrix", "real scalar");

  warn_implicit_conversion ("Octave:array-to-scalar",
                            "complex matrix", "real scalar");

  return std::real (matrix(0, 0));
}

NDArray
octave_complex_matrix::array_value (bool force_conversion) const
{
  NDArray retval;

  if (! force_conversion)
    warn_implicit_conversion ("Octave:imag-to-real",
                              "complex matrix", "real matrix");

  retval = ::real (matrix);

  return retval;
}

Matrix
octave_complex_matrix::matrix_value (bool force_conversion) const
{
  Matrix retval;

  if (! force_conversion)
    warn_implicit_conversion ("Octave:imag-to-real",
                              "complex matrix", "real matrix");

  retval = ::real (ComplexMatrix (matrix));

  return retval;
}

FloatMatrix
octave_complex_matrix::float_matrix_value (bool force_conversion) const
{
  FloatMatrix retval;

  if (! force_conversion)
    warn_implicit_conversion ("Octave:imag-to-real",
                              "complex matrix", "real matrix");

  retval = ::real (ComplexMatrix (matrix));

  return retval;
}

Complex
octave_complex_matrix::complex_value (bool) const
{
  if (rows () == 0 || columns () == 0)
    err_invalid_conversion ("complex matrix", "complex scalar");

  warn_implicit_conversion ("Octave:array-to-scalar",
                            "complex matrix", "complex scalar");

  return matrix(0, 0);
}

FloatComplex
octave_complex_matrix::float_complex_value (bool) const
{
  float tmp = lo_ieee_float_nan_value ();

  FloatComplex retval (tmp, tmp);

  if (rows () == 0 || columns () == 0)
    err_invalid_conversion ("complex matrix", "complex scalar");

  warn_implicit_conversion ("Octave:array-to-scalar",
                            "complex matrix", "complex scalar");

  retval = matrix(0, 0);

  return retval;
}

ComplexMatrix
octave_complex_matrix::complex_matrix_value (bool) const
{
  return ComplexMatrix (matrix);
}

FloatComplexMatrix
octave_complex_matrix::float_complex_matrix_value (bool) const
{
  return FloatComplexMatrix (ComplexMatrix (matrix));
}

boolNDArray
octave_complex_matrix::bool_array_value (bool warn) const
{
  if (matrix.any_element_is_nan ())
    octave::err_nan_to_logical_conversion ();
  if (warn && (! matrix.all_elements_are_real ()
               || real (matrix).any_element_not_one_or_zero ()))
    warn_logical_conversion ();

  return mx_el_ne (matrix, Complex (0.0));
}

charNDArray
octave_complex_matrix::char_array_value (bool frc_str_conv) const
{
  charNDArray retval;

  if (! frc_str_conv)
    warn_implicit_conversion ("Octave:num-to-str",
                              "complex matrix", "string");
  else
    {
      retval = charNDArray (dims ());
      octave_idx_type nel = numel ();

      for (octave_idx_type i = 0; i < nel; i++)
        retval.elem (i) = static_cast<char> (std::real (matrix.elem (i)));
    }

  return retval;
}

FloatComplexNDArray
octave_complex_matrix::float_complex_array_value (bool) const
{
  return FloatComplexNDArray (matrix);
}

SparseMatrix
octave_complex_matrix::sparse_matrix_value (bool force_conversion) const
{
  SparseMatrix retval;

  if (! force_conversion)
    warn_implicit_conversion ("Octave:imag-to-real",
                              "complex matrix", "real matrix");

  retval = SparseMatrix (::real (ComplexMatrix (matrix)));

  return retval;
}

SparseComplexMatrix
octave_complex_matrix::sparse_complex_matrix_value (bool) const
{
  return SparseComplexMatrix (ComplexMatrix (matrix));
}

octave_value
octave_complex_matrix::as_double (void) const
{
  return matrix;
}

octave_value
octave_complex_matrix::as_single (void) const
{
  return FloatComplexNDArray (matrix);
}

octave_value
octave_complex_matrix::diag (octave_idx_type k) const
{
  octave_value retval;
  if (k == 0 && matrix.ndims () == 2
      && (matrix.rows () == 1 || matrix.columns () == 1))
    retval = ComplexDiagMatrix (DiagArray2<Complex> (matrix));
  else
    retval = octave_base_matrix<ComplexNDArray>::diag (k);

  return retval;
}

octave_value
octave_complex_matrix::diag (octave_idx_type m, octave_idx_type n) const
{
  if (matrix.ndims () != 2
      || (matrix.rows () != 1 && matrix.columns () != 1))
    error ("diag: expecting vector argument");

  ComplexMatrix mat (matrix);

  return mat.diag (m, n);
}

bool
octave_complex_matrix::save_ascii (std::ostream& os)
{
  dim_vector dv = dims ();
  if (dv.ndims () > 2)
    {
      ComplexNDArray tmp = complex_array_value ();

      os << "# ndims: " << dv.ndims () << "\n";

      for (int i = 0; i < dv.ndims (); i++)
        os << ' ' << dv(i);

      os << "\n" << tmp;
    }
  else
    {
      // Keep this case, rather than use generic code above for backward
      // compatibility.  Makes load_ascii much more complex!!
      os << "# rows: " << rows () << "\n"
         << "# columns: " << columns () << "\n";

      os << complex_matrix_value ();
    }

  return true;
}

bool
octave_complex_matrix::load_ascii (std::istream& is)
{
  string_vector keywords(2);

  keywords[0] = "ndims";
  keywords[1] = "rows";

  std::string kw;
  octave_idx_type val = 0;

  if (! extract_keyword (is, keywords, kw, val, true))
    error ("load: failed to extract number of rows and columns");

  if (kw == "ndims")
    {
      int mdims = static_cast<int> (val);

      if (mdims < 0)
        error ("load: failed to extract number of dimensions");

      dim_vector dv;
      dv.resize (mdims);

      for (int i = 0; i < mdims; i++)
        is >> dv(i);

      if (! is)
        error ("load: failed to read dimensions");

      ComplexNDArray tmp(dv);

      is >> tmp;

      if (! is)
        error ("load: failed to load matrix constant");

      matrix = tmp;
    }
  else if (kw == "rows")
    {
      octave_idx_type nr = val;
      octave_idx_type nc = 0;

      if (nr < 0 || ! extract_keyword (is, "columns", nc) || nc < 0)
        error ("load: failed to extract number of rows and columns");

      if (nr > 0 && nc > 0)
        {
          ComplexMatrix tmp (nr, nc);
          is >> tmp;
          if (! is)
            error ("load: failed to load matrix constant");

          matrix = tmp;
        }
      else if (nr == 0 || nc == 0)
        matrix = ComplexMatrix (nr, nc);
      else
        panic_impossible ();
    }
  else
    panic_impossible ();

  return true;
}

bool
octave_complex_matrix::save_binary (std::ostream& os, bool save_as_floats)
{
  dim_vector dv = dims ();
  if (dv.ndims () < 1)
    return false;

  // Use negative value for ndims to differentiate with old format!!
  int32_t tmp = - dv.ndims ();
  os.write (reinterpret_cast<char *> (&tmp), 4);
  for (int i = 0; i < dv.ndims (); i++)
    {
      tmp = dv(i);
      os.write (reinterpret_cast<char *> (&tmp), 4);
    }

  ComplexNDArray m = complex_array_value ();
  save_type st = LS_DOUBLE;
  if (save_as_floats)
    {
      if (m.too_large_for_float ())
        {
          warning ("save: some values too large to save as floats --");
          warning ("save: saving as doubles instead");
        }
      else
        st = LS_FLOAT;
    }
  else if (dv.numel () > 4096) // FIXME: make this configurable.
    {
      double max_val, min_val;
      if (m.all_integers (max_val, min_val))
        st = get_save_type (max_val, min_val);
    }

  const Complex *mtmp = m.data ();
  write_doubles (os, reinterpret_cast<const double *> (mtmp), st,
                 2 * dv.numel ());

  return true;
}

bool
octave_complex_matrix::load_binary (std::istream& is, bool swap,
                                    octave::mach_info::float_format fmt)
{
  char tmp;
  int32_t mdims;
  if (! is.read (reinterpret_cast<char *> (&mdims), 4))
    return false;
  if (swap)
    swap_bytes<4> (&mdims);
  if (mdims < 0)
    {
      mdims = - mdims;
      int32_t di;
      dim_vector dv;
      dv.resize (mdims);

      for (int i = 0; i < mdims; i++)
        {
          if (! is.read (reinterpret_cast<char *> (&di), 4))
            return false;
          if (swap)
            swap_bytes<4> (&di);
          dv(i) = di;
        }

      // Convert an array with a single dimension to be a row vector.
      // Octave should never write files like this, other software
      // might.

      if (mdims == 1)
        {
          mdims = 2;
          dv.resize (mdims);
          dv(1) = dv(0);
          dv(0) = 1;
        }

      if (! is.read (reinterpret_cast<char *> (&tmp), 1))
        return false;

      ComplexNDArray m(dv);
      Complex *im = m.fortran_vec ();
      read_doubles (is, reinterpret_cast<double *> (im),
                    static_cast<save_type> (tmp), 2 * dv.numel (), swap, fmt);

      if (! is)
        return false;

      matrix = m;
    }
  else
    {
      int32_t nr, nc;
      nr = mdims;
      if (! is.read (reinterpret_cast<char *> (&nc), 4))
        return false;
      if (swap)
        swap_bytes<4> (&nc);
      if (! is.read (reinterpret_cast<char *> (&tmp), 1))
        return false;
      ComplexMatrix m (nr, nc);
      Complex *im = m.fortran_vec ();
      octave_idx_type len = nr * nc;
      read_doubles (is, reinterpret_cast<double *> (im),
                    static_cast<save_type> (tmp), 2*len, swap, fmt);

      if (! is)
        return false;

      matrix = m;
    }
  return true;
}

bool
octave_complex_matrix::save_hdf5 (octave_hdf5_id loc_id, const char *name,
                                  bool save_as_floats)
{
#if defined (HAVE_HDF5)

  dim_vector dv = dims ();
  int empty = save_hdf5_empty (loc_id, name, dv);
  if (empty)
    return (empty > 0);

  int rank = dv.ndims ();
  hid_t space_hid, data_hid, type_hid;
  space_hid = data_hid = type_hid = -1;
  bool retval = true;
  ComplexNDArray m = complex_array_value ();

  OCTAVE_LOCAL_BUFFER (hsize_t, hdims, rank);

  // Octave uses column-major, while HDF5 uses row-major ordering
  for (int i = 0; i < rank; i++)
    hdims[i] = dv(rank-i-1);

  space_hid = H5Screate_simple (rank, hdims, nullptr);
  if (space_hid < 0) return false;

  hid_t save_type_hid = H5T_NATIVE_DOUBLE;

  if (save_as_floats)
    {
      if (m.too_large_for_float ())
        {
          warning ("save: some values too large to save as floats --");
          warning ("save: saving as doubles instead");
        }
      else
        save_type_hid = H5T_NATIVE_FLOAT;
    }
#if defined (HAVE_HDF5_INT2FLOAT_CONVERSIONS)
  // hdf5 currently doesn't support float/integer conversions
  else
    {
      double max_val, min_val;

      if (m.all_integers (max_val, min_val))
        save_type_hid
          = save_type_to_hdf5 (get_save_type (max_val, min_val));
    }
#endif

  type_hid = hdf5_make_complex_type (save_type_hid);
  if (type_hid < 0)
    {
      H5Sclose (space_hid);
      return false;
    }
#if defined (HAVE_HDF5_18)
  data_hid = H5Dcreate (loc_id, name, type_hid, space_hid,
                        octave_H5P_DEFAULT, octave_H5P_DEFAULT, octave_H5P_DEFAULT);
#else
  data_hid = H5Dcreate (loc_id, name, type_hid, space_hid, octave_H5P_DEFAULT);
#endif
  if (data_hid < 0)
    {
      H5Sclose (space_hid);
      H5Tclose (type_hid);
      return false;
    }

  hid_t complex_type_hid = hdf5_make_complex_type (H5T_NATIVE_DOUBLE);
  if (complex_type_hid < 0) retval = false;

  if (retval)
    {
      Complex *mtmp = m.fortran_vec ();
      if (H5Dwrite (data_hid, complex_type_hid, octave_H5S_ALL, octave_H5S_ALL,
                    octave_H5P_DEFAULT, mtmp)
          < 0)
        {
          H5Tclose (complex_type_hid);
          retval = false;
        }
    }

  H5Tclose (complex_type_hid);
  H5Dclose (data_hid);
  H5Tclose (type_hid);
  H5Sclose (space_hid);

  return retval;

#else
  octave_unused_parameter (loc_id);
  octave_unused_parameter (name);
  octave_unused_parameter (save_as_floats);

  warn_save ("hdf5");

  return false;
#endif
}

bool
octave_complex_matrix::load_hdf5 (octave_hdf5_id loc_id, const char *name)
{
  bool retval = false;

#if defined (HAVE_HDF5)

  dim_vector dv;
  int empty = load_hdf5_empty (loc_id, name, dv);
  if (empty > 0)
    matrix.resize (dv);
  if (empty)
    return (empty > 0);

#if defined (HAVE_HDF5_18)
  hid_t data_hid = H5Dopen (loc_id, name, octave_H5P_DEFAULT);
#else
  hid_t data_hid = H5Dopen (loc_id, name);
#endif
  hid_t type_hid = H5Dget_type (data_hid);

  hid_t complex_type = hdf5_make_complex_type (H5T_NATIVE_DOUBLE);

  if (! hdf5_types_compatible (type_hid, complex_type))
    {
      H5Tclose (complex_type);
      H5Dclose (data_hid);
      return false;
    }

  hid_t space_id = H5Dget_space (data_hid);

  hsize_t rank = H5Sget_simple_extent_ndims (space_id);

  if (rank < 1)
    {
      H5Tclose (complex_type);
      H5Sclose (space_id);
      H5Dclose (data_hid);
      return false;
    }

  OCTAVE_LOCAL_BUFFER (hsize_t, hdims, rank);
  OCTAVE_LOCAL_BUFFER (hsize_t, maxdims, rank);

  H5Sget_simple_extent_dims (space_id, hdims, maxdims);

  // Octave uses column-major, while HDF5 uses row-major ordering
  if (rank == 1)
    {
      dv.resize (2);
      dv(0) = 1;
      dv(1) = hdims[0];
    }
  else
    {
      dv.resize (rank);
      for (hsize_t i = 0, j = rank - 1; i < rank; i++, j--)
        dv(j) = hdims[i];
    }

  ComplexNDArray m (dv);
  Complex *reim = m.fortran_vec ();
  if (H5Dread (data_hid, complex_type, octave_H5S_ALL, octave_H5S_ALL,
               octave_H5P_DEFAULT, reim)
      >= 0)
    {
      retval = true;
      matrix = m;
    }

  H5Tclose (complex_type);
  H5Sclose (space_id);
  H5Dclose (data_hid);

#else
  octave_unused_parameter (loc_id);
  octave_unused_parameter (name);

  warn_load ("hdf5");
#endif

  return retval;
}

void
octave_complex_matrix::print_raw (std::ostream& os,
                                  bool pr_as_read_syntax) const
{
  octave_print_internal (os, matrix, pr_as_read_syntax,
                         current_print_indent_level ());
}

mxArray *
octave_complex_matrix::as_mxArray (bool interleaved) const
{
  mxArray *retval = new mxArray (interleaved, mxDOUBLE_CLASS, dims (),
                                 mxCOMPLEX);

  mwSize nel = numel ();

  const Complex *pdata = matrix.data ();

  if (interleaved)
    {
      mxComplexDouble *pd
        = static_cast<mxComplexDouble *> (retval->get_data ());

      for (mwIndex i = 0; i < nel; i++)
        {
          pd[i].real = pdata[i].real ();
          pd[i].imag = pdata[i].imag ();
        }
    }
  else
    {
      mxDouble *pr = static_cast<mxDouble *> (retval->get_data ());
      mxDouble *pi = static_cast<mxDouble *> (retval->get_imag_data ());

      for (mwIndex i = 0; i < nel; i++)
        {
          pr[i] = pdata[i].real ();
          pi[i] = pdata[i].imag ();
        }
    }

  return retval;
}

octave_value
octave_complex_matrix::map (unary_mapper_t umap) const
{
  switch (umap)
    {
    // Mappers handled specially.
    case umap_real:
      return ::real (matrix);
    case umap_imag:
      return ::imag (matrix);
    case umap_conj:
      return ::conj (matrix);

    // Special cases for Matlab compatibility.
    case umap_xtolower:
    case umap_xtoupper:
      return matrix;

#define ARRAY_METHOD_MAPPER(UMAP, FCN)        \
    case umap_ ## UMAP:                       \
      return octave_value (matrix.FCN ())

    ARRAY_METHOD_MAPPER (abs, abs);
    ARRAY_METHOD_MAPPER (isnan, isnan);
    ARRAY_METHOD_MAPPER (isinf, isinf);
    ARRAY_METHOD_MAPPER (isfinite, isfinite);

#define ARRAY_MAPPER(UMAP, TYPE, FCN)                 \
    case umap_ ## UMAP:                               \
      return octave_value (matrix.map<TYPE> (FCN))

    ARRAY_MAPPER (acos, Complex, octave::math::acos);
    ARRAY_MAPPER (acosh, Complex, octave::math::acosh);
    ARRAY_MAPPER (angle, double, std::arg);
    ARRAY_MAPPER (arg, double, std::arg);
    ARRAY_MAPPER (asin, Complex, octave::math::asin);
    ARRAY_MAPPER (asinh, Complex, octave::math::asinh);
    ARRAY_MAPPER (atan, Complex, octave::math::atan);
    ARRAY_MAPPER (atanh, Complex, octave::math::atanh);
    ARRAY_MAPPER (erf, Complex, octave::math::erf);
    ARRAY_MAPPER (erfc, Complex, octave::math::erfc);
    ARRAY_MAPPER (erfcx, Complex, octave::math::erfcx);
    ARRAY_MAPPER (erfi, Complex, octave::math::erfi);
    ARRAY_MAPPER (dawson, Complex, octave::math::dawson);
    ARRAY_MAPPER (ceil, Complex, octave::math::ceil);
    ARRAY_MAPPER (cos, Complex, std::cos);
    ARRAY_MAPPER (cosh, Complex, std::cosh);
    ARRAY_MAPPER (exp, Complex, std::exp);
    ARRAY_MAPPER (expm1, Complex, octave::math::expm1);
    ARRAY_MAPPER (fix, Complex, octave::math::fix);
    ARRAY_MAPPER (floor, Complex, octave::math::floor);
    ARRAY_MAPPER (log, Complex, std::log);
    ARRAY_MAPPER (log2, Complex, octave::math::log2);
    ARRAY_MAPPER (log10, Complex, std::log10);
    ARRAY_MAPPER (log1p, Complex, octave::math::log1p);
    ARRAY_MAPPER (round, Complex, octave::math::round);
    ARRAY_MAPPER (roundb, Complex, octave::math::roundb);
    ARRAY_MAPPER (signum, Complex, octave::math::signum);
    ARRAY_MAPPER (sin, Complex, std::sin);
    ARRAY_MAPPER (sinh, Complex, std::sinh);
    ARRAY_MAPPER (sqrt, Complex, std::sqrt);
    ARRAY_MAPPER (tan, Complex, std::tan);
    ARRAY_MAPPER (tanh, Complex, std::tanh);
    ARRAY_MAPPER (isna, bool, octave::math::isna);

    default:
      return octave_base_value::map (umap);
    }
}