view liboctave/array/CColVector.cc @ 28240:2fb684dc2ec2

axis.m: Implement "fill" option for Matlab compatibility. * axis.m: Document that "fill" is a synonym for "normal". Place "vis3d" option in documentation table for modes which affect aspect ratio. Add strcmpi (opt, "fill") to decode opt and executed the same behavior as "normal".
author Rik <rik@octave.org>
date Fri, 24 Apr 2020 13:16:09 -0700
parents bd51beb6205e
children 0a5b15007766
line wrap: on
line source

////////////////////////////////////////////////////////////////////////
//
// Copyright (C) 1994-2020 The Octave Project Developers
//
// See the file COPYRIGHT.md in the top-level directory of this
// distribution or <https://octave.org/copyright/>.
//
// This file is part of Octave.
//
// Octave is free software: you can redistribute it and/or modify it
// under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// Octave is distributed in the hope that it will be useful, but
// WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with Octave; see the file COPYING.  If not, see
// <https://www.gnu.org/licenses/>.
//
////////////////////////////////////////////////////////////////////////

#if defined (HAVE_CONFIG_H)
#  include "config.h"
#endif

#include <istream>
#include <ostream>

#include "Array-util.h"
#include "lo-blas-proto.h"
#include "lo-error.h"
#include "mx-base.h"
#include "mx-inlines.cc"
#include "oct-cmplx.h"

// Complex Column Vector class

ComplexColumnVector::ComplexColumnVector (const ColumnVector& a)
  : MArray<Complex> (a)
{ }

bool
ComplexColumnVector::operator == (const ComplexColumnVector& a) const
{
  octave_idx_type len = numel ();
  if (len != a.numel ())
    return 0;
  return mx_inline_equal (len, data (), a.data ());
}

bool
ComplexColumnVector::operator != (const ComplexColumnVector& a) const
{
  return !(*this == a);
}

// destructive insert/delete/reorder operations

ComplexColumnVector&
ComplexColumnVector::insert (const ColumnVector& a, octave_idx_type r)
{
  octave_idx_type a_len = a.numel ();

  if (r < 0 || r + a_len > numel ())
    (*current_liboctave_error_handler) ("range error for insert");

  if (a_len > 0)
    {
      make_unique ();

      for (octave_idx_type i = 0; i < a_len; i++)
        xelem (r+i) = a.elem (i);
    }

  return *this;
}

ComplexColumnVector&
ComplexColumnVector::insert (const ComplexColumnVector& a, octave_idx_type r)
{
  octave_idx_type a_len = a.numel ();

  if (r < 0 || r + a_len > numel ())
    (*current_liboctave_error_handler) ("range error for insert");

  if (a_len > 0)
    {
      make_unique ();

      for (octave_idx_type i = 0; i < a_len; i++)
        xelem (r+i) = a.elem (i);
    }

  return *this;
}

ComplexColumnVector&
ComplexColumnVector::fill (double val)
{
  octave_idx_type len = numel ();

  if (len > 0)
    {
      make_unique ();

      for (octave_idx_type i = 0; i < len; i++)
        xelem (i) = val;
    }

  return *this;
}

ComplexColumnVector&
ComplexColumnVector::fill (const Complex& val)
{
  octave_idx_type len = numel ();

  if (len > 0)
    {
      make_unique ();

      for (octave_idx_type i = 0; i < len; i++)
        xelem (i) = val;
    }

  return *this;
}

ComplexColumnVector&
ComplexColumnVector::fill (double val, octave_idx_type r1, octave_idx_type r2)
{
  octave_idx_type len = numel ();

  if (r1 < 0 || r2 < 0 || r1 >= len || r2 >= len)
    (*current_liboctave_error_handler) ("range error for fill");

  if (r1 > r2) { std::swap (r1, r2); }

  if (r2 >= r1)
    {
      make_unique ();

      for (octave_idx_type i = r1; i <= r2; i++)
        xelem (i) = val;
    }

  return *this;
}

ComplexColumnVector&
ComplexColumnVector::fill (const Complex& val,
                           octave_idx_type r1, octave_idx_type r2)
{
  octave_idx_type len = numel ();

  if (r1 < 0 || r2 < 0 || r1 >= len || r2 >= len)
    (*current_liboctave_error_handler) ("range error for fill");

  if (r1 > r2) { std::swap (r1, r2); }

  if (r2 >= r1)
    {
      make_unique ();

      for (octave_idx_type i = r1; i <= r2; i++)
        xelem (i) = val;
    }

  return *this;
}

ComplexColumnVector
ComplexColumnVector::stack (const ColumnVector& a) const
{
  octave_idx_type len = numel ();
  octave_idx_type nr_insert = len;
  ComplexColumnVector retval (len + a.numel ());
  retval.insert (*this, 0);
  retval.insert (a, nr_insert);
  return retval;
}

ComplexColumnVector
ComplexColumnVector::stack (const ComplexColumnVector& a) const
{
  octave_idx_type len = numel ();
  octave_idx_type nr_insert = len;
  ComplexColumnVector retval (len + a.numel ());
  retval.insert (*this, 0);
  retval.insert (a, nr_insert);
  return retval;
}

ComplexRowVector
ComplexColumnVector::hermitian (void) const
{
  return MArray<Complex>::hermitian (std::conj);
}

ComplexRowVector
ComplexColumnVector::transpose (void) const
{
  return MArray<Complex>::transpose ();
}

ColumnVector
ComplexColumnVector::abs (void) const
{
  return do_mx_unary_map<double, Complex, std::abs> (*this);
}

ComplexColumnVector
conj (const ComplexColumnVector& a)
{
  return do_mx_unary_map<Complex, Complex, std::conj<double>> (a);
}

// resize is the destructive equivalent for this one

ComplexColumnVector
ComplexColumnVector::extract (octave_idx_type r1, octave_idx_type r2) const
{
  if (r1 > r2) { std::swap (r1, r2); }

  octave_idx_type new_r = r2 - r1 + 1;

  ComplexColumnVector result (new_r);

  for (octave_idx_type i = 0; i < new_r; i++)
    result.elem (i) = elem (r1+i);

  return result;
}

ComplexColumnVector
ComplexColumnVector::extract_n (octave_idx_type r1, octave_idx_type n) const
{
  ComplexColumnVector result (n);

  for (octave_idx_type i = 0; i < n; i++)
    result.elem (i) = elem (r1+i);

  return result;
}

// column vector by column vector -> column vector operations

ComplexColumnVector&
ComplexColumnVector::operator += (const ColumnVector& a)
{
  octave_idx_type len = numel ();

  octave_idx_type a_len = a.numel ();

  if (len != a_len)
    octave::err_nonconformant ("operator +=", len, a_len);

  if (len == 0)
    return *this;

  Complex *d = fortran_vec (); // Ensures only one reference to my privates!

  mx_inline_add2 (len, d, a.data ());
  return *this;
}

ComplexColumnVector&
ComplexColumnVector::operator -= (const ColumnVector& a)
{
  octave_idx_type len = numel ();

  octave_idx_type a_len = a.numel ();

  if (len != a_len)
    octave::err_nonconformant ("operator -=", len, a_len);

  if (len == 0)
    return *this;

  Complex *d = fortran_vec (); // Ensures only one reference to my privates!

  mx_inline_sub2 (len, d, a.data ());
  return *this;
}

// matrix by column vector -> column vector operations

ComplexColumnVector
operator * (const ComplexMatrix& m, const ColumnVector& a)
{
  ComplexColumnVector tmp (a);
  return m * tmp;
}

ComplexColumnVector
operator * (const ComplexMatrix& m, const ComplexColumnVector& a)
{
  ComplexColumnVector retval;

  F77_INT nr = octave::to_f77_int (m.rows ());
  F77_INT nc = octave::to_f77_int (m.cols ());

  F77_INT a_len = octave::to_f77_int (a.numel ());

  if (nc != a_len)
    octave::err_nonconformant ("operator *", nr, nc, a_len, 1);

  retval.clear (nr);

  if (nr != 0)
    {
      if (nc == 0)
        retval.fill (0.0);
      else
        {
          Complex *y = retval.fortran_vec ();

          F77_XFCN (zgemv, ZGEMV, (F77_CONST_CHAR_ARG2 ("N", 1),
                                   nr, nc, 1.0,
                                   F77_CONST_DBLE_CMPLX_ARG (m.data ()), nr,
                                   F77_CONST_DBLE_CMPLX_ARG (a.data ()), 1, 0.0,
                                   F77_DBLE_CMPLX_ARG (y), 1
                                   F77_CHAR_ARG_LEN (1)));
        }
    }

  return retval;
}

// matrix by column vector -> column vector operations

ComplexColumnVector
operator * (const Matrix& m, const ComplexColumnVector& a)
{
  ComplexMatrix tmp (m);
  return tmp * a;
}

// diagonal matrix by column vector -> column vector operations

ComplexColumnVector
operator * (const DiagMatrix& m, const ComplexColumnVector& a)
{
  F77_INT nr = octave::to_f77_int (m.rows ());
  F77_INT nc = octave::to_f77_int (m.cols ());

  F77_INT a_len = octave::to_f77_int (a.numel ());

  if (nc != a_len)
    octave::err_nonconformant ("operator *", nr, nc, a_len, 1);

  if (nc == 0 || nr == 0)
    return ComplexColumnVector (0);

  ComplexColumnVector result (nr);

  for (octave_idx_type i = 0; i < a_len; i++)
    result.elem (i) = a.elem (i) * m.elem (i, i);

  for (octave_idx_type i = a_len; i < nr; i++)
    result.elem (i) = 0.0;

  return result;
}

ComplexColumnVector
operator * (const ComplexDiagMatrix& m, const ColumnVector& a)
{
  F77_INT nr = octave::to_f77_int (m.rows ());
  F77_INT nc = octave::to_f77_int (m.cols ());

  F77_INT a_len = octave::to_f77_int (a.numel ());

  if (nc != a_len)
    octave::err_nonconformant ("operator *", nr, nc, a_len, 1);

  if (nc == 0 || nr == 0)
    return ComplexColumnVector (0);

  ComplexColumnVector result (nr);

  for (octave_idx_type i = 0; i < a_len; i++)
    result.elem (i) = a.elem (i) * m.elem (i, i);

  for (octave_idx_type i = a_len; i < nr; i++)
    result.elem (i) = 0.0;

  return result;
}

ComplexColumnVector
operator * (const ComplexDiagMatrix& m, const ComplexColumnVector& a)
{
  F77_INT nr = octave::to_f77_int (m.rows ());
  F77_INT nc = octave::to_f77_int (m.cols ());

  F77_INT a_len = octave::to_f77_int (a.numel ());

  if (nc != a_len)
    octave::err_nonconformant ("operator *", nr, nc, a_len, 1);

  if (nc == 0 || nr == 0)
    return ComplexColumnVector (0);

  ComplexColumnVector result (nr);

  for (octave_idx_type i = 0; i < a_len; i++)
    result.elem (i) = a.elem (i) * m.elem (i, i);

  for (octave_idx_type i = a_len; i < nr; i++)
    result.elem (i) = 0.0;

  return result;
}

// other operations

Complex
ComplexColumnVector::min (void) const
{
  octave_idx_type len = numel ();
  if (len == 0)
    return 0.0;

  Complex res = elem (0);
  double absres = std::abs (res);

  for (octave_idx_type i = 1; i < len; i++)
    if (std::abs (elem (i)) < absres)
      {
        res = elem (i);
        absres = std::abs (res);
      }

  return res;
}

Complex
ComplexColumnVector::max (void) const
{
  octave_idx_type len = numel ();
  if (len == 0)
    return 0.0;

  Complex res = elem (0);
  double absres = std::abs (res);

  for (octave_idx_type i = 1; i < len; i++)
    if (std::abs (elem (i)) > absres)
      {
        res = elem (i);
        absres = std::abs (res);
      }

  return res;
}

// i/o

std::ostream&
operator << (std::ostream& os, const ComplexColumnVector& a)
{
//  int field_width = os.precision () + 7;
  for (octave_idx_type i = 0; i < a.numel (); i++)
    os << /* setw (field_width) << */ a.elem (i) << "\n";
  return os;
}

std::istream&
operator >> (std::istream& is, ComplexColumnVector& a)
{
  octave_idx_type len = a.numel ();

  if (len > 0)
    {
      double tmp;
      for (octave_idx_type i = 0; i < len; i++)
        {
          is >> tmp;
          if (is)
            a.elem (i) = tmp;
          else
            break;
        }
    }
  return is;
}