view liboctave/array/CRowVector.cc @ 28240:2fb684dc2ec2

axis.m: Implement "fill" option for Matlab compatibility. * axis.m: Document that "fill" is a synonym for "normal". Place "vis3d" option in documentation table for modes which affect aspect ratio. Add strcmpi (opt, "fill") to decode opt and executed the same behavior as "normal".
author Rik <rik@octave.org>
date Fri, 24 Apr 2020 13:16:09 -0700
parents bd51beb6205e
children 0a5b15007766
line wrap: on
line source

////////////////////////////////////////////////////////////////////////
//
// Copyright (C) 1994-2020 The Octave Project Developers
//
// See the file COPYRIGHT.md in the top-level directory of this
// distribution or <https://octave.org/copyright/>.
//
// This file is part of Octave.
//
// Octave is free software: you can redistribute it and/or modify it
// under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// Octave is distributed in the hope that it will be useful, but
// WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with Octave; see the file COPYING.  If not, see
// <https://www.gnu.org/licenses/>.
//
////////////////////////////////////////////////////////////////////////

#if defined (HAVE_CONFIG_H)
#  include "config.h"
#endif

#include <istream>
#include <ostream>
#include <type_traits>

#include "Array-util.h"
#include "lo-blas-proto.h"
#include "lo-error.h"
#include "mx-base.h"
#include "mx-inlines.cc"
#include "oct-cmplx.h"

// Complex Row Vector class

bool
ComplexRowVector::operator == (const ComplexRowVector& a) const
{
  octave_idx_type len = numel ();
  if (len != a.numel ())
    return 0;
  return mx_inline_equal (len, data (), a.data ());
}

bool
ComplexRowVector::operator != (const ComplexRowVector& a) const
{
  return !(*this == a);
}

// destructive insert/delete/reorder operations

ComplexRowVector&
ComplexRowVector::insert (const RowVector& a, octave_idx_type c)
{
  octave_idx_type a_len = a.numel ();

  if (c < 0 || c + a_len > numel ())
    (*current_liboctave_error_handler) ("range error for insert");

  if (a_len > 0)
    {
      make_unique ();

      for (octave_idx_type i = 0; i < a_len; i++)
        xelem (c+i) = a.elem (i);
    }

  return *this;
}

ComplexRowVector&
ComplexRowVector::insert (const ComplexRowVector& a, octave_idx_type c)
{
  octave_idx_type a_len = a.numel ();

  if (c < 0 || c + a_len > numel ())
    (*current_liboctave_error_handler) ("range error for insert");

  if (a_len > 0)
    {
      make_unique ();

      for (octave_idx_type i = 0; i < a_len; i++)
        xelem (c+i) = a.elem (i);
    }

  return *this;
}

ComplexRowVector&
ComplexRowVector::fill (double val)
{
  octave_idx_type len = numel ();

  if (len > 0)
    {
      make_unique ();

      for (octave_idx_type i = 0; i < len; i++)
        xelem (i) = val;
    }

  return *this;
}

ComplexRowVector&
ComplexRowVector::fill (const Complex& val)
{
  octave_idx_type len = numel ();

  if (len > 0)
    {
      make_unique ();

      for (octave_idx_type i = 0; i < len; i++)
        xelem (i) = val;
    }

  return *this;
}

ComplexRowVector&
ComplexRowVector::fill (double val, octave_idx_type c1, octave_idx_type c2)
{
  octave_idx_type len = numel ();

  if (c1 < 0 || c2 < 0 || c1 >= len || c2 >= len)
    (*current_liboctave_error_handler) ("range error for fill");

  if (c1 > c2) { std::swap (c1, c2); }

  if (c2 >= c1)
    {
      make_unique ();

      for (octave_idx_type i = c1; i <= c2; i++)
        xelem (i) = val;
    }

  return *this;
}

ComplexRowVector&
ComplexRowVector::fill (const Complex& val,
                        octave_idx_type c1, octave_idx_type c2)
{
  octave_idx_type len = numel ();

  if (c1 < 0 || c2 < 0 || c1 >= len || c2 >= len)
    (*current_liboctave_error_handler) ("range error for fill");

  if (c1 > c2) { std::swap (c1, c2); }

  if (c2 >= c1)
    {
      make_unique ();

      for (octave_idx_type i = c1; i <= c2; i++)
        xelem (i) = val;
    }

  return *this;
}

ComplexRowVector
ComplexRowVector::append (const RowVector& a) const
{
  octave_idx_type len = numel ();
  octave_idx_type nc_insert = len;
  ComplexRowVector retval (len + a.numel ());
  retval.insert (*this, 0);
  retval.insert (a, nc_insert);
  return retval;
}

ComplexRowVector
ComplexRowVector::append (const ComplexRowVector& a) const
{
  octave_idx_type len = numel ();
  octave_idx_type nc_insert = len;
  ComplexRowVector retval (len + a.numel ());
  retval.insert (*this, 0);
  retval.insert (a, nc_insert);
  return retval;
}

ComplexColumnVector
ComplexRowVector::hermitian (void) const
{
  return MArray<Complex>::hermitian (std::conj);
}

ComplexColumnVector
ComplexRowVector::transpose (void) const
{
  return MArray<Complex>::transpose ();
}

ComplexRowVector
conj (const ComplexRowVector& a)
{
  return do_mx_unary_map<Complex, Complex, std::conj<double>> (a);
}

// resize is the destructive equivalent for this one

ComplexRowVector
ComplexRowVector::extract (octave_idx_type c1, octave_idx_type c2) const
{
  if (c1 > c2) { std::swap (c1, c2); }

  octave_idx_type new_c = c2 - c1 + 1;

  ComplexRowVector result (new_c);

  for (octave_idx_type i = 0; i < new_c; i++)
    result.elem (i) = elem (c1+i);

  return result;
}

ComplexRowVector
ComplexRowVector::extract_n (octave_idx_type r1, octave_idx_type n) const
{
  ComplexRowVector result (n);

  for (octave_idx_type i = 0; i < n; i++)
    result.elem (i) = elem (r1+i);

  return result;
}

// row vector by row vector -> row vector operations

ComplexRowVector&
ComplexRowVector::operator += (const RowVector& a)
{
  octave_idx_type len = numel ();

  octave_idx_type a_len = a.numel ();

  if (len != a_len)
    octave::err_nonconformant ("operator +=", len, a_len);

  if (len == 0)
    return *this;

  Complex *d = fortran_vec (); // Ensures only one reference to my privates!

  mx_inline_add2 (len, d, a.data ());
  return *this;
}

ComplexRowVector&
ComplexRowVector::operator -= (const RowVector& a)
{
  octave_idx_type len = numel ();

  octave_idx_type a_len = a.numel ();

  if (len != a_len)
    octave::err_nonconformant ("operator -=", len, a_len);

  if (len == 0)
    return *this;

  Complex *d = fortran_vec (); // Ensures only one reference to my privates!

  mx_inline_sub2 (len, d, a.data ());
  return *this;
}

// row vector by matrix -> row vector

ComplexRowVector
operator * (const ComplexRowVector& v, const ComplexMatrix& a)
{
  ComplexRowVector retval;

  F77_INT len = octave::to_f77_int (v.numel ());

  F77_INT a_nr = octave::to_f77_int (a.rows ());
  F77_INT a_nc = octave::to_f77_int (a.cols ());

  if (a_nr != len)
    octave::err_nonconformant ("operator *", 1, len, a_nr, a_nc);

  if (len == 0)
    retval.resize (a_nc, 0.0);
  else
    {
      // Transpose A to form A'*x == (x'*A)'

      F77_INT ld = a_nr;

      retval.resize (a_nc);
      Complex *y = retval.fortran_vec ();

      F77_XFCN (zgemv, ZGEMV, (F77_CONST_CHAR_ARG2 ("T", 1),
                               a_nr, a_nc, 1.0, F77_CONST_DBLE_CMPLX_ARG (a.data ()),
                               ld, F77_CONST_DBLE_CMPLX_ARG (v.data ()), 1, 0.0, F77_DBLE_CMPLX_ARG (y), 1
                               F77_CHAR_ARG_LEN (1)));
    }

  return retval;
}

ComplexRowVector
operator * (const RowVector& v, const ComplexMatrix& a)
{
  ComplexRowVector tmp (v);
  return tmp * a;
}

// other operations

Complex
ComplexRowVector::min (void) const
{
  octave_idx_type len = numel ();
  if (len == 0)
    return Complex (0.0);

  Complex res = elem (0);
  double absres = std::abs (res);

  for (octave_idx_type i = 1; i < len; i++)
    if (std::abs (elem (i)) < absres)
      {
        res = elem (i);
        absres = std::abs (res);
      }

  return res;
}

Complex
ComplexRowVector::max (void) const
{
  octave_idx_type len = numel ();
  if (len == 0)
    return Complex (0.0);

  Complex res = elem (0);
  double absres = std::abs (res);

  for (octave_idx_type i = 1; i < len; i++)
    if (std::abs (elem (i)) > absres)
      {
        res = elem (i);
        absres = std::abs (res);
      }

  return res;
}

// i/o

std::ostream&
operator << (std::ostream& os, const ComplexRowVector& a)
{
//  int field_width = os.precision () + 7;
  for (octave_idx_type i = 0; i < a.numel (); i++)
    os << ' ' /* setw (field_width) */ << a.elem (i);
  return os;
}

std::istream&
operator >> (std::istream& is, ComplexRowVector& a)
{
  octave_idx_type len = a.numel ();

  if (len > 0)
    {
      Complex tmp;
      for (octave_idx_type i = 0; i < len; i++)
        {
          is >> tmp;
          if (is)
            a.elem (i) = tmp;
          else
            break;
        }
    }
  return is;
}

// row vector by column vector -> scalar

// row vector by column vector -> scalar

Complex
operator * (const ComplexRowVector& v, const ColumnVector& a)
{
  ComplexColumnVector tmp (a);
  return v * tmp;
}

Complex
operator * (const ComplexRowVector& v, const ComplexColumnVector& a)
{
  Complex retval (0.0, 0.0);

  F77_INT len = octave::to_f77_int (v.numel ());

  F77_INT a_len = octave::to_f77_int (a.numel ());

  if (len != a_len)
    octave::err_nonconformant ("operator *", len, a_len);
  if (len != 0)
    F77_FUNC (xzdotu, XZDOTU) (len, F77_CONST_DBLE_CMPLX_ARG (v.data ()), 1,
                               F77_CONST_DBLE_CMPLX_ARG (a.data ()), 1, F77_DBLE_CMPLX_ARG (&retval));

  return retval;
}

// other operations

ComplexRowVector
linspace (const Complex& x1, const Complex& x2, octave_idx_type n_in)
{
  ComplexRowVector retval;

  if (n_in < 1)
    return retval;
  else if (n_in == 1)
    {
      retval.resize (1, x2);
      return retval;
    }

  // Use unsigned type (guaranteed n_in > 1 at this point) so that divisions
  // by 2 can be replaced by compiler with shift right instructions.
  typedef std::make_unsigned<octave_idx_type>::type unsigned_octave_idx_type;

  unsigned_octave_idx_type n = n_in;

  // Set endpoints, rather than calculate, for maximum accuracy.
  retval.clear (n);
  retval.xelem (0) = x1;
  retval.xelem (n-1) = x2;

  // Construct linspace symmetrically from both ends.
  Complex delta = (x2 - x1) / (n - 1.0);
  unsigned_octave_idx_type n2 = n/2;
  for (unsigned_octave_idx_type i = 1; i < n2; i++)
    {
      retval.xelem (i) = x1 + static_cast<double> (i)*delta;
      retval.xelem (n-1-i) = x2 - static_cast<double> (i)*delta;
    }
  if (n % 2 == 1)  // Middle element if number of elements is odd.
    retval.xelem (n2) = (x1 == -x2 ? 0 : (x1 + x2) / 2.0);

  return retval;
}