view liboctave/array/DiagArray2.h @ 28240:2fb684dc2ec2

axis.m: Implement "fill" option for Matlab compatibility. * axis.m: Document that "fill" is a synonym for "normal". Place "vis3d" option in documentation table for modes which affect aspect ratio. Add strcmpi (opt, "fill") to decode opt and executed the same behavior as "normal".
author Rik <rik@octave.org>
date Fri, 24 Apr 2020 13:16:09 -0700
parents bd51beb6205e
children 3ef055ca1d5e 0a5b15007766
line wrap: on
line source

////////////////////////////////////////////////////////////////////////
//
// Copyright (C) 1996-2020 The Octave Project Developers
//
// See the file COPYRIGHT.md in the top-level directory of this
// distribution or <https://octave.org/copyright/>.
//
// This file is part of Octave.
//
// Octave is free software: you can redistribute it and/or modify it
// under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// Octave is distributed in the hope that it will be useful, but
// WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with Octave; see the file COPYING.  If not, see
// <https://www.gnu.org/licenses/>.
//
////////////////////////////////////////////////////////////////////////

#if ! defined (octave_DiagArray2_h)
#define octave_DiagArray2_h 1

#include "octave-config.h"

#include <cassert>
#include <cstdlib>

#include "Array.h"

// Array<T> is inherited privately so that some methods, like index, don't
// produce unexpected results.

template <typename T>
class
DiagArray2 : protected Array<T>
{
protected:
  octave_idx_type d1, d2;

public:

  using typename Array<T>::element_type;

  DiagArray2 (void)
    : Array<T> (), d1 (0), d2 (0) { }

  DiagArray2 (octave_idx_type r, octave_idx_type c)
    : Array<T> (dim_vector (std::min (r, c), 1)), d1 (r), d2 (c) { }

  DiagArray2 (octave_idx_type r, octave_idx_type c, const T& val)
    : Array<T> (dim_vector (std::min (r, c), 1), val), d1 (r), d2 (c) { }

  explicit DiagArray2 (const Array<T>& a)
    : Array<T> (a.as_column ()), d1 (a.numel ()), d2 (a.numel ()) { }

  DiagArray2 (const Array<T>& a, octave_idx_type r, octave_idx_type c);

  DiagArray2 (const DiagArray2<T>& a)
    : Array<T> (a), d1 (a.d1), d2 (a.d2) { }

  template <typename U>
  DiagArray2 (const DiagArray2<U>& a)
    : Array<T> (a.extract_diag ()), d1 (a.dim1 ()), d2 (a.dim2 ()) { }

  ~DiagArray2 (void) = default;

  DiagArray2<T>& operator = (const DiagArray2<T>& a)
  {
    if (this != &a)
      {
        Array<T>::operator = (a);
        d1 = a.d1;
        d2 = a.d2;
      }

    return *this;
  }

  octave_idx_type dim1 (void) const { return d1; }
  octave_idx_type dim2 (void) const { return d2; }

  octave_idx_type rows (void) const { return dim1 (); }
  octave_idx_type cols (void) const { return dim2 (); }
  octave_idx_type columns (void) const { return dim2 (); }

  octave_idx_type diag_length (void) const { return Array<T>::numel (); }
  // FIXME: a dangerous ambiguity?
  octave_idx_type length (void) const { return Array<T>::numel (); }
  octave_idx_type nelem (void) const { return dim1 () * dim2 (); }
  octave_idx_type numel (void) const { return nelem (); }

  size_t byte_size (void) const { return Array<T>::byte_size (); }

  dim_vector dims (void) const { return dim_vector (d1, d2); }

  bool isempty (void) const { return numel () == 0; }

  int ndims (void) const { return 2; }

  Array<T> extract_diag (octave_idx_type k = 0) const;

  DiagArray2<T> build_diag_matrix () const
  {
    return DiagArray2<T> (array_value ());
  }

  // Warning: the non-const two-index versions will silently ignore assignments
  // to off-diagonal elements.

  T elem (octave_idx_type r, octave_idx_type c) const
  {
    return (r == c) ? Array<T>::elem (r) : T (0);
  }

  T& elem (octave_idx_type r, octave_idx_type c);

  T dgelem (octave_idx_type i) const
  { return Array<T>::elem (i); }

  T& dgelem (octave_idx_type i)
  { return Array<T>::elem (i); }

  T checkelem (octave_idx_type r, octave_idx_type c) const
  { return check_idx (r, c) ? elem (r, c) : T (0); }

  T operator () (octave_idx_type r, octave_idx_type c) const
  {
    return elem (r, c);
  }

  T& checkelem (octave_idx_type r, octave_idx_type c);

  T& operator () (octave_idx_type r, octave_idx_type c)
  {
    return elem (r, c);
  }

  // No checking.

  T xelem (octave_idx_type r, octave_idx_type c) const
  {
    return (r == c) ? Array<T>::xelem (r) : T (0);
  }

  T& dgxelem (octave_idx_type i)
  { return Array<T>::xelem (i); }

  T dgxelem (octave_idx_type i) const
  { return Array<T>::xelem (i); }

  void resize (octave_idx_type n, octave_idx_type m, const T& rfv);
  void resize (octave_idx_type n, octave_idx_type m)
  {
    resize (n, m, Array<T>::resize_fill_value ());
  }

  DiagArray2<T> transpose (void) const;
  DiagArray2<T> hermitian (T (*fcn) (const T&) = nullptr) const;

  Array<T> array_value (void) const;

  const T * data (void) const { return Array<T>::data (); }

  const T * fortran_vec (void) const { return Array<T>::fortran_vec (); }

  T * fortran_vec (void) { return Array<T>::fortran_vec (); }

  void print_info (std::ostream& os, const std::string& prefix) const
  { Array<T>::print_info (os, prefix); }

private:

  bool check_idx (octave_idx_type r, octave_idx_type c) const;
};

#endif