view liboctave/array/Sparse.h @ 28240:2fb684dc2ec2

axis.m: Implement "fill" option for Matlab compatibility. * axis.m: Document that "fill" is a synonym for "normal". Place "vis3d" option in documentation table for modes which affect aspect ratio. Add strcmpi (opt, "fill") to decode opt and executed the same behavior as "normal".
author Rik <rik@octave.org>
date Fri, 24 Apr 2020 13:16:09 -0700
parents bd51beb6205e
children 4e1805033979 0a5b15007766
line wrap: on
line source

////////////////////////////////////////////////////////////////////////
//
// Copyright (C) 1998-2020 The Octave Project Developers
//
// See the file COPYRIGHT.md in the top-level directory of this
// distribution or <https://octave.org/copyright/>.
//
// This file is part of Octave.
//
// Octave is free software: you can redistribute it and/or modify it
// under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// Octave is distributed in the hope that it will be useful, but
// WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with Octave; see the file COPYING.  If not, see
// <https://www.gnu.org/licenses/>.
//
////////////////////////////////////////////////////////////////////////

#if ! defined (octave_Sparse_h)
#define octave_Sparse_h 1

#include "octave-config.h"

#include <cassert>
#include <cstddef>

#include <algorithm>
#include <iosfwd>
#include <string>

#include "Array.h"

class idx_vector;
class PermMatrix;

// Two dimensional sparse class.  Handles the reference counting for
// all the derived classes.

template <typename T>
class
Sparse
{
public:

  typedef T element_type;

protected:
  //--------------------------------------------------------------------
  // The real representation of all Sparse arrays.
  //--------------------------------------------------------------------

  class OCTAVE_API SparseRep
  {
  public:

    T *d;
    octave_idx_type *r;
    octave_idx_type *c;
    octave_idx_type nzmx;
    octave_idx_type nrows;
    octave_idx_type ncols;
    octave::refcount<octave_idx_type> count;

    SparseRep (void)
      : d (new T [1]), r (new octave_idx_type [1] {}),
        c (new octave_idx_type [1] {}),
        nzmx (1), nrows (0), ncols (0), count (1)
    { }

    SparseRep (octave_idx_type n)
      : d (new T [1]), r (new octave_idx_type [1] {}),
        c (new octave_idx_type [n+1] {}),
        nzmx (1), nrows (n), ncols (n), count (1)
    { }

    SparseRep (octave_idx_type nr, octave_idx_type nc, octave_idx_type nz = 1)
      : d (nz > 0 ? new T [nz] : new T [1]),
        r (nz > 0 ? new octave_idx_type [nz] {} : new octave_idx_type [1] {}),
        c (new octave_idx_type [nc+1] {}),
        nzmx (nz > 0 ? nz : 1), nrows (nr), ncols (nc), count (1)
    { }

    SparseRep (const SparseRep& a)
      : d (new T [a.nzmx]), r (new octave_idx_type [a.nzmx]),
        c (new octave_idx_type [a.ncols + 1]),
        nzmx (a.nzmx), nrows (a.nrows), ncols (a.ncols), count (1)
    {
      octave_idx_type nz = a.nnz ();
      std::copy_n (a.d, nz, d);
      std::copy_n (a.r, nz, r);
      std::copy_n (a.c, ncols + 1, c);
    }

    ~SparseRep (void) { delete [] d; delete [] r; delete [] c; }

    octave_idx_type length (void) const { return nzmx; }

    octave_idx_type nnz (void) const { return c[ncols]; }

    T& elem (octave_idx_type _r, octave_idx_type _c);

    T celem (octave_idx_type _r, octave_idx_type _c) const;

    T& data (octave_idx_type i) { return d[i]; }

    T cdata (octave_idx_type i) const { return d[i]; }

    octave_idx_type& ridx (octave_idx_type i) { return r[i]; }

    octave_idx_type cridx (octave_idx_type i) const { return r[i]; }

    octave_idx_type& cidx (octave_idx_type i) { return c[i]; }

    octave_idx_type ccidx (octave_idx_type i) const { return c[i]; }

    void maybe_compress (bool remove_zeros);

    void change_length (octave_idx_type nz);

    bool indices_ok (void) const;

    bool any_element_is_nan (void) const;

  private:

    // No assignment!

    SparseRep& operator = (const SparseRep& a);
  };

  //--------------------------------------------------------------------

  void make_unique (void)
  {
    if (rep->count > 1)
      {
        SparseRep *r = new SparseRep (*rep);

        if (--rep->count == 0)
          delete rep;

        rep = r;
      }
  }

public:

  // !!! WARNING !!! -- these should be protected, not public.  You
  // should not access these data members directly!

  typename Sparse<T>::SparseRep *rep;

  dim_vector dimensions;

private:

  static typename Sparse<T>::SparseRep *nil_rep (void);

public:

  Sparse (void)
    : rep (nil_rep ()), dimensions (dim_vector (0,0))
  {
    rep->count++;
  }

  explicit Sparse (octave_idx_type n)
    : rep (new typename Sparse<T>::SparseRep (n)),
      dimensions (dim_vector (n, n)) { }

  explicit Sparse (octave_idx_type nr, octave_idx_type nc)
    : rep (new typename Sparse<T>::SparseRep (nr, nc)),
      dimensions (dim_vector (nr, nc)) { }

  explicit Sparse (octave_idx_type nr, octave_idx_type nc, T val);

  Sparse (const dim_vector& dv, octave_idx_type nz)
    : rep (new typename Sparse<T>::SparseRep (dv(0), dv(1), nz)),
      dimensions (dv) { }

  Sparse (octave_idx_type nr, octave_idx_type nc, octave_idx_type nz)
    : rep (new typename Sparse<T>::SparseRep (nr, nc, nz)),
      dimensions (dim_vector (nr, nc)) { }

  // Both SparseMatrix and SparseBoolMatrix need this ctor, and this
  // is their only common ancestor.
  explicit Sparse (const PermMatrix& a);

  // Type conversion case.  Preserves nzmax.
  template <typename U>
  Sparse (const Sparse<U>& a)
    : rep (new typename Sparse<T>::SparseRep (a.rep->nrows, a.rep->ncols,
                                              a.rep->nzmx)),
      dimensions (a.dimensions)
  {
    octave_idx_type nz = a.nnz ();
    std::copy_n (a.rep->d, nz, rep->d);
    std::copy_n (a.rep->r, nz, rep->r);
    std::copy_n (a.rep->c, rep->ncols + 1, rep->c);
  }

  // No type conversion case.
  Sparse (const Sparse<T>& a)
    : rep (a.rep), dimensions (a.dimensions)
  {
    rep->count++;
  }

public:

  Sparse (const dim_vector& dv);

  Sparse (const Sparse<T>& a, const dim_vector& dv);

  Sparse (const Array<T>& a, const idx_vector& r, const idx_vector& c,
          octave_idx_type nr = -1, octave_idx_type nc = -1,
          bool sum_terms = true, octave_idx_type nzm = -1);

  // Sparsify a normal matrix
  Sparse (const Array<T>& a);

  virtual ~Sparse (void);

  Sparse<T>& operator = (const Sparse<T>& a);

  //! Amount of storage for nonzero elements.
  //! This may differ from the actual number of elements, see nnz().
  octave_idx_type nzmax (void) const { return rep->length (); }

  //! Actual number of nonzero terms.
  octave_idx_type nnz (void) const { return rep->nnz (); }

  // Querying the number of elements (incl. zeros) may overflow the index type,
  // so don't do it unless you really need it.
  octave_idx_type numel (void) const
  {
    return dimensions.safe_numel ();
  }

  octave_idx_type dim1 (void) const { return dimensions(0); }
  octave_idx_type dim2 (void) const { return dimensions(1); }

  octave_idx_type rows (void) const { return dim1 (); }
  octave_idx_type cols (void) const { return dim2 (); }
  octave_idx_type columns (void) const { return dim2 (); }

  octave_idx_type get_row_index (octave_idx_type k) { return ridx (k); }
  octave_idx_type get_col_index (octave_idx_type k)
  {
    octave_idx_type ret = 0;
    while (cidx (ret+1) < k)
      ret++;
    return ret;
  }

  size_t byte_size (void) const
  {
    return (static_cast<size_t> (cols () + 1) * sizeof (octave_idx_type)
            + static_cast<size_t> (nzmax ())
            * (sizeof (T) + sizeof (octave_idx_type)));
  }

  dim_vector dims (void) const { return dimensions; }

  Sparse<T> squeeze (void) const { return *this; }

  octave_idx_type compute_index (const Array<octave_idx_type>& ra_idx) const;

  // FIXME: Functions are marked as NORETURN, but they are used with
  //        a return statement in following code.  Shouldn't that be fixed?
  OCTAVE_NORETURN T range_error (const char *fcn, octave_idx_type n) const;
  OCTAVE_NORETURN T& range_error (const char *fcn, octave_idx_type n);

  OCTAVE_NORETURN T range_error (const char *fcn,
                                 octave_idx_type i, octave_idx_type j) const;
  OCTAVE_NORETURN T& range_error (const char *fcn,
                                  octave_idx_type i, octave_idx_type j);

  OCTAVE_NORETURN T range_error (const char *fcn,
                                 const Array<octave_idx_type>& ra_idx) const;
  OCTAVE_NORETURN T& range_error (const char *fcn,
                                  const Array<octave_idx_type>& ra_idx);

  // No checking, even for multiple references, ever.

  T& xelem (octave_idx_type n)
  {
    octave_idx_type i = n % rows ();
    octave_idx_type j = n / rows ();
    return xelem (i, j);
  }

  T xelem (octave_idx_type n) const
  {
    octave_idx_type i = n % rows ();
    octave_idx_type j = n / rows ();
    return xelem (i, j);
  }

  T& xelem (octave_idx_type i, octave_idx_type j) { return rep->elem (i, j); }
  T xelem (octave_idx_type i, octave_idx_type j) const
  {
    return rep->celem (i, j);
  }

  T& xelem (const Array<octave_idx_type>& ra_idx)
  { return xelem (compute_index (ra_idx)); }

  T xelem (const Array<octave_idx_type>& ra_idx) const
  { return xelem (compute_index (ra_idx)); }

  // FIXME: would be nice to fix this so that we don't unnecessarily force a
  // copy, but that is not so easy, and I see no clean way to do it.

  T& checkelem (octave_idx_type n)
  {
    if (n < 0 || n >= numel ())
      // FIXME: Why should we "return" when range_error is OCTAVE_NORETURN?
      return range_error ("T& Sparse<T>::checkelem", n);
    else
      {
        make_unique ();
        return xelem (n);
      }
  }

  T& checkelem (octave_idx_type i, octave_idx_type j)
  {
    if (i < 0 || j < 0 || i >= dim1 () || j >= dim2 ())
      return range_error ("T& Sparse<T>::checkelem", i, j);
    else
      {
        make_unique ();
        return xelem (i, j);
      }
  }

  T& checkelem (const Array<octave_idx_type>& ra_idx)
  {
    octave_idx_type i = compute_index (ra_idx);

    if (i < 0)
      return range_error ("T& Sparse<T>::checkelem", ra_idx);
    else
      return elem (i);
  }

  T& elem (octave_idx_type n)
  {
    make_unique ();
    return xelem (n);
  }

  T& elem (octave_idx_type i, octave_idx_type j)
  {
    make_unique ();
    return xelem (i, j);
  }

  T& elem (const Array<octave_idx_type>& ra_idx)
  { return Sparse<T>::elem (compute_index (ra_idx)); }

  T& operator () (octave_idx_type n)
  {
    return elem (n);
  }

  T& operator () (octave_idx_type i, octave_idx_type j)
  {
    return elem (i, j);
  }

  T& operator () (const Array<octave_idx_type>& ra_idx)
  {
    return elem (ra_idx);
  }

  T checkelem (octave_idx_type n) const
  {
    if (n < 0 || n >= numel ())
      return range_error ("T Sparse<T>::checkelem", n);
    else
      return xelem (n);
  }

  T checkelem (octave_idx_type i, octave_idx_type j) const
  {
    if (i < 0 || j < 0 || i >= dim1 () || j >= dim2 ())
      return range_error ("T Sparse<T>::checkelem", i, j);
    else
      return xelem (i, j);
  }

  T checkelem (const Array<octave_idx_type>& ra_idx) const
  {
    octave_idx_type i = compute_index (ra_idx);

    if (i < 0)
      return range_error ("T Sparse<T>::checkelem", ra_idx);
    else
      return Sparse<T>::elem (i);
  }

  T elem (octave_idx_type n) const { return xelem (n); }

  T elem (octave_idx_type i, octave_idx_type j) const { return xelem (i, j); }

  T elem (const Array<octave_idx_type>& ra_idx) const
  { return Sparse<T>::elem (compute_index (ra_idx)); }

  T operator () (octave_idx_type n) const { return elem (n); }

  T operator () (octave_idx_type i, octave_idx_type j) const
  {
    return elem (i, j);
  }

  T operator () (const Array<octave_idx_type>& ra_idx) const
  {
    return elem (ra_idx);
  }

  Sparse<T> maybe_compress (bool remove_zeros = false)
  {
    if (remove_zeros)
      make_unique ();  // Need to unshare because elements are removed.

    rep->maybe_compress (remove_zeros);
    return (*this);
  }

  Sparse<T> reshape (const dim_vector& new_dims) const;

  Sparse<T> permute (const Array<octave_idx_type>& vec, bool inv = false) const;

  Sparse<T> ipermute (const Array<octave_idx_type>& vec) const
  {
    return permute (vec, true);
  }

  void resize1 (octave_idx_type n);

  void resize (octave_idx_type r, octave_idx_type c);

  void resize (const dim_vector& dv);

  void change_capacity (octave_idx_type nz)
  {
    if (nz < nnz ())
      make_unique ();  // Unshare now because elements will be truncated.
    rep->change_length (nz);
  }

  Sparse<T>& insert (const Sparse<T>& a, octave_idx_type r, octave_idx_type c);
  Sparse<T>& insert (const Sparse<T>& a, const Array<octave_idx_type>& idx);

  bool issquare (void) const { return (dim1 () == dim2 ()); }

  bool isempty (void) const { return (rows () < 1 || cols () < 1); }

  Sparse<T> transpose (void) const;

  T * data (void) { make_unique (); return rep->d; }
  T& data (octave_idx_type i) { make_unique (); return rep->data (i); }
  T * xdata (void) { return rep->d; }
  T& xdata (octave_idx_type i) { return rep->data (i); }

  T data (octave_idx_type i) const { return rep->data (i); }
  // FIXME: shouldn't this be returning const T*?
  T * data (void) const { return rep->d; }

  octave_idx_type * ridx (void) { make_unique (); return rep->r; }
  octave_idx_type& ridx (octave_idx_type i)
  {
    make_unique (); return rep->ridx (i);
  }

  octave_idx_type * xridx (void) { return rep->r; }
  octave_idx_type& xridx (octave_idx_type i) { return rep->ridx (i); }

  octave_idx_type ridx (octave_idx_type i) const { return rep->cridx (i); }
  // FIXME: shouldn't this be returning const octave_idx_type*?
  octave_idx_type * ridx (void) const { return rep->r; }

  octave_idx_type * cidx (void) { make_unique (); return rep->c; }
  octave_idx_type& cidx (octave_idx_type i)
  {
    make_unique (); return rep->cidx (i);
  }

  octave_idx_type * xcidx (void) { return rep->c; }
  octave_idx_type& xcidx (octave_idx_type i) { return rep->cidx (i); }

  octave_idx_type cidx (octave_idx_type i) const { return rep->ccidx (i); }
  // FIXME: shouldn't this be returning const octave_idx_type*?
  octave_idx_type * cidx (void) const { return rep->c; }

  octave_idx_type ndims (void) const { return dimensions.ndims (); }

  void delete_elements (const idx_vector& i);

  void delete_elements (int dim, const idx_vector& i);

  void delete_elements (const idx_vector& i, const idx_vector& j);

  Sparse<T> index (const idx_vector& i, bool resize_ok = false) const;

  Sparse<T> index (const idx_vector& i, const idx_vector& j,
                   bool resize_ok = false) const;

  void assign (const idx_vector& i, const Sparse<T>& rhs);

  void assign (const idx_vector& i, const idx_vector& j, const Sparse<T>& rhs);

  void print_info (std::ostream& os, const std::string& prefix) const;

  // Unsafe.  These functions exist to support the MEX interface.
  // You should not use them anywhere else.
  void * mex_get_data (void) const { return const_cast<T *> (data ()); }

  octave_idx_type * mex_get_ir (void) const
  {
    return const_cast<octave_idx_type *> (ridx ());
  }

  octave_idx_type * mex_get_jc (void) const
  {
    return const_cast<octave_idx_type *> (cidx ());
  }

  Sparse<T> sort (octave_idx_type dim = 0, sortmode mode = ASCENDING) const;
  Sparse<T> sort (Array<octave_idx_type> &sidx, octave_idx_type dim = 0,
                  sortmode mode = ASCENDING) const;

  Sparse<T> diag (octave_idx_type k = 0) const;

  // dim = -1 and dim = -2 are special; see Array<T>::cat description.
  static Sparse<T>
  cat (int dim, octave_idx_type n, const Sparse<T> *sparse_list);

  Array<T> array_value (void) const;

  // Generic any/all test functionality with arbitrary predicate.
  template <typename F, bool zero>
  bool test (F fcn) const
  {
    return any_all_test<F, T, zero> (fcn, data (), nnz ());
  }

  // Simpler calls.
  template <typename F>
  bool test_any (F fcn) const
  { return test<F, false> (fcn); }

  template <typename F>
  bool test_all (F fcn) const
  { return test<F, true> (fcn); }

  // Overloads for function references.
  bool test_any (bool (&fcn) (T)) const
  { return test<bool (&) (T), false> (fcn); }

  bool test_any (bool (&fcn) (const T&)) const
  { return test<bool (&) (const T&), false> (fcn); }

  bool test_all (bool (&fcn) (T)) const
  { return test<bool (&) (T), true> (fcn); }

  bool test_all (bool (&fcn) (const T&)) const
  { return test<bool (&) (const T&), true> (fcn); }

  template <typename U, typename F>
  Sparse<U>
  map (F fcn) const
  {
    Sparse<U> result;
    U f_zero = fcn (0.0);

    if (f_zero != 0.0)
      {
        octave_idx_type nr = rows ();
        octave_idx_type nc = cols ();

        result = Sparse<U> (nr, nc, f_zero);

        for (octave_idx_type j = 0; j < nc; j++)
          for (octave_idx_type i = cidx (j); i < cidx (j+1); i++)
            {
              octave_quit ();
              /* Use data instead of elem for better performance. */
              result.data (ridx (i) + j * nr) = fcn (data (i));
            }

        result.maybe_compress (true);
      }
    else
      {
        octave_idx_type nz = nnz ();
        octave_idx_type nr = rows ();
        octave_idx_type nc = cols ();

        result = Sparse<U> (nr, nc, nz);
        octave_idx_type ii = 0;
        result.cidx (ii) = 0;

        for (octave_idx_type j = 0; j < nc; j++)
          {
            for (octave_idx_type i = cidx (j); i < cidx (j+1); i++)
              {
                U val = fcn (data (i));
                if (val != 0.0)
                  {
                    result.data (ii) = val;
                    result.ridx (ii++) = ridx (i);
                  }
                octave_quit ();
              }
            result.cidx (j+1) = ii;
          }

        result.maybe_compress (false);
      }

    return result;
  }

  // Overloads for function references.
  template <typename U>
  Sparse<U>
  map (U (&fcn) (T)) const
  { return map<U, U (&) (T)> (fcn); }

  template <typename U>
  Sparse<U>
  map (U (&fcn) (const T&)) const
  { return map<U, U (&) (const T&)> (fcn); }

  bool indices_ok (void) const { return rep->indices_ok (); }

  bool any_element_is_nan (void) const
  { return rep->any_element_is_nan (); }
};

template <typename T>
std::istream&
read_sparse_matrix (std::istream& is, Sparse<T>& a,
                    T (*read_fcn) (std::istream&));

#endif