view scripts/linear-algebra/condeig.m @ 28240:2fb684dc2ec2

axis.m: Implement "fill" option for Matlab compatibility. * axis.m: Document that "fill" is a synonym for "normal". Place "vis3d" option in documentation table for modes which affect aspect ratio. Add strcmpi (opt, "fill") to decode opt and executed the same behavior as "normal".
author Rik <rik@octave.org>
date Fri, 24 Apr 2020 13:16:09 -0700
parents bd51beb6205e
children de5f2f9a64ff 0a5b15007766
line wrap: on
line source

########################################################################
##
## Copyright (C) 2006-2020 The Octave Project Developers
##
## See the file COPYRIGHT.md in the top-level directory of this
## distribution or <https://octave.org/copyright/>.
##
## This file is part of Octave.
##
## Octave is free software: you can redistribute it and/or modify it
## under the terms of the GNU General Public License as published by
## the Free Software Foundation, either version 3 of the License, or
## (at your option) any later version.
##
## Octave is distributed in the hope that it will be useful, but
## WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
## GNU General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with Octave; see the file COPYING.  If not, see
## <https://www.gnu.org/licenses/>.
##
########################################################################

## -*- texinfo -*-
## @deftypefn  {} {@var{c} =} condeig (@var{a})
## @deftypefnx {} {[@var{v}, @var{lambda}, @var{c}] =} condeig (@var{a})
## Compute condition numbers of a matrix with respect to eigenvalues.
##
## The condition numbers are the reciprocals of the cosines of the angles
## between the left and right eigenvectors; Large values indicate that the
## matrix has multiple distinct eigenvalues.
##
## The input @var{a} must be a square numeric matrix.
##
## The outputs are:
##
## @itemize @bullet
## @item
## @var{c} is a vector of condition numbers for the eigenvalues of
## @var{a}.
##
## @item
## @var{v} is the matrix of right eigenvectors of @var{a}.  The result is
## equivalent to calling @code{[@var{v}, @var{lambda}] = eig (@var{a})}.
##
## @item
## @var{lambda} is the diagonal matrix of eigenvalues of @var{a}.  The
## result is equivalent to calling
## @code{[@var{v}, @var{lambda}] = eig (@var{a})}.
## @end itemize
##
## Example
##
## @example
## @group
## a = [1, 2; 3, 4];
## c = condeig (a)
##   @result{} c =
##        1.0150
##        1.0150
## @end group
## @end example
## @seealso{eig, cond, balance}
## @end deftypefn

function [v, lambda, c] = condeig (a)

  if (nargin != 1)
    print_usage ();
  endif

  if (! (isnumeric (a) && issquare (a)))
    error ("condeig: A must be a square numeric matrix");
  endif

  if (issparse (a) && nargout <= 1)
    ## Try to use svds to calculate the condition number as it will typically
    ## be much faster than calling eig as only the smallest and largest
    ## eigenvalue are calculated.

    ## FIXME: This calculates one condition number for the entire matrix.
    ## In the full case, separate condition numbers are calculated for every
    ## eigenvalue.
    try
      s0 = svds (a, 1, 0);    # min eigenvalue
      v = svds (a, 1) / s0;   # max eigenvalue
    catch
      ## Caught an error as there is a singular value exactly at zero!!
      v = Inf;
    end_try_catch
    return;
  endif

  ## Right eigenvectors
  [v, lambda] = eig (a);

  if (isempty (a))
    c = [];
  else
    ## Corresponding left eigenvectors
    ## Use 2-argument form to suppress possible singular matrix warning.
    [vl, ~] = inv (v);
    vl = vl';
    ## Normalize vectors
    vl ./= repmat (sqrt (sum (abs (vl .^ 2))), rows (vl), 1);

    ## Condition numbers
    ## Definition: cos (angle) = (norm (v1) * norm (v2)) / dot (v1, v2)
    ## Eigenvectors have been normalized so 'norm (v1) * norm (v2)' = 1
    c = abs (1 ./ dot (vl, v)');
  endif

  if (nargout <= 1)
    v = c;
  endif

endfunction


%!test
%! a = [1, 2; 3, 4];
%! c = condeig (a);
%! expected_c = [1.0150; 1.0150];
%! assert (c, expected_c, 0.001);

%!test
%! a = [1, 3; 5, 8];
%! [v, lambda, c] = condeig (a);
%! [expected_v, expected_lambda] = eig (a);
%! expected_c = [1.0182; 1.0182];
%! assert (v, expected_v, 0.001);
%! assert (lambda, expected_lambda, 0.001);
%! assert (c, expected_c, 0.001);

# Test empty input
%!assert (condeig ([]), [])

## Test input validation
%!error condeig ()
%!error condeig (1,2)
%!error <A must be a square numeric matrix> condeig ({1})
%!error <A must be a square numeric matrix> condeig (ones (3,2))
%!error <A must be a square numeric matrix> condeig (ones (2,2,2))