view scripts/linear-algebra/condest.m @ 28240:2fb684dc2ec2

axis.m: Implement "fill" option for Matlab compatibility. * axis.m: Document that "fill" is a synonym for "normal". Place "vis3d" option in documentation table for modes which affect aspect ratio. Add strcmpi (opt, "fill") to decode opt and executed the same behavior as "normal".
author Rik <rik@octave.org>
date Fri, 24 Apr 2020 13:16:09 -0700
parents 687d452070c9
children a01ad9893641
line wrap: on
line source

########################################################################
##
## Copyright (C) 2007-2020 The Octave Project Developers
##
## See the file COPYRIGHT.md in the top-level directory of this
## distribution or <https://octave.org/copyright/>.
##
## This file is part of Octave.
##
## Octave is free software: you can redistribute it and/or modify it
## under the terms of the GNU General Public License as published by
## the Free Software Foundation, either version 3 of the License, or
## (at your option) any later version.
##
## Octave is distributed in the hope that it will be useful, but
## WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
## GNU General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with Octave; see the file COPYING.  If not, see
## <https://www.gnu.org/licenses/>.
##
########################################################################

## -*- texinfo -*-
## @deftypefn  {} {@var{cest} =} condest (@var{A})
## @deftypefnx {} {@var{cest} =} condest (@var{A}, @var{t})
## @deftypefnx {} {@var{cest} =} condest (@var{A}, @var{Ainvfcn})
## @deftypefnx {} {@var{cest} =} condest (@var{A}, @var{Ainvfcn}, @var{t})
## @deftypefnx {} {@var{cest} =} condest (@var{A}, @var{Ainvfcn}, @var{t}, @var{p1}, @var{p2}, @dots{})
## @deftypefnx {} {@var{cest} =} condest (@var{Afcn}, @var{Ainvfcn})
## @deftypefnx {} {@var{cest} =} condest (@var{Afcn}, @var{Ainvfcn}, @var{t})
## @deftypefnx {} {@var{cest} =} condest (@var{Afcn}, @var{Ainvfcn}, @var{t}, @var{p1}, @var{p2}, @dots{})
## @deftypefnx {} {[@var{cest}, @var{v}] =} condest (@dots{})
##
## Estimate the 1-norm condition number of a square matrix @var{A} using
## @var{t} test vectors and a randomized 1-norm estimator.
##
## The optional input @var{t} specifies the number of test vectors (default 5).
##
## The input may be a matrix @var{A} (the algorithm is particularly
## appropriate for large, sparse matrices).  Alternatively, the behavior of
## the matrix can be defined implicitly by functions.  When using an implicit
## definition, @code{condest} requires the following functions:
##
## @itemize @minus
## @item @code{@var{Afcn} (@var{flag}, @var{x})} which must return
##
## @itemize @bullet
## @item
## the dimension @var{n} of @var{A}, if @var{flag} is @qcode{"dim"}
##
## @item
## true if @var{A} is a real operator, if @var{flag} is @qcode{"real"}
##
## @item
## the result @code{@var{A} * @var{x}}, if @var{flag} is "notransp"
##
## @item
## the result @code{@var{A}' * @var{x}}, if @var{flag} is "transp"
## @end itemize
##
## @item @code{@var{Ainvfcn} (@var{flag}, @var{x})} which must return
##
## @itemize @bullet
## @item
## the dimension @var{n} of @code{inv (@var{A})}, if @var{flag} is
## @qcode{"dim"}
##
## @item
## true if @code{inv (@var{A})} is a real operator, if @var{flag} is
## @qcode{"real"}
##
## @item
## the result @code{inv (@var{A}) * @var{x}}, if @var{flag} is "notransp"
##
## @item
## the result @code{inv (@var{A})' * @var{x}}, if @var{flag} is "transp"
## @end itemize
## @end itemize
##
## Any parameters @var{p1}, @var{p2}, @dots{} are additional arguments of
## @code{@var{Afcn} (@var{flag}, @var{x}, @var{p1}, @var{p2}, @dots{})}
## and @code{@var{Ainvfcn} (@var{flag}, @var{x}, @var{p1}, @var{p2}, @dots{})}.
##
## The principal output is the 1-norm condition number estimate @var{cest}.
##
## The optional second output @var{v} is an approximate null vector; it
## satisfies the equation @code{norm (@var{A}*@var{v}, 1) ==
## norm (@var{A}, 1) * norm (@var{v}, 1) / @var{cest}}.
##
## Algorithm Note: @code{condest} uses a randomized algorithm to approximate
## the 1-norms.  Therefore, if consistent results are required, the
## @qcode{"state"} of the random generator should be fixed before invoking
## @code{condest}.
##
## References:
##
## @itemize
## @item
## @nospell{N.J. Higham and F. Tisseur}, @cite{A Block Algorithm
## for Matrix 1-Norm Estimation, with an Application to 1-Norm
## Pseudospectra}.  SIMAX vol 21, no 4, pp 1185--1201.
## @url{https://dx.doi.org/10.1137/S0895479899356080}
##
## @item
## @nospell{N.J. Higham and F. Tisseur}, @cite{A Block Algorithm
## for Matrix 1-Norm Estimation, with an Application to 1-Norm
## Pseudospectra}.  @url{https://citeseer.ist.psu.edu/223007.html}
## @end itemize
##
## @seealso{cond, rcond, norm, normest1, normest}
## @end deftypefn

## Code originally licensed under:
##
## Copyright (c) 2007, Regents of the University of California
## All rights reserved.
##
## Redistribution and use in source and binary forms, with or without
## modification, are permitted provided that the following conditions
## are met:
##
##    * Redistributions of source code must retain the above copyright
##      notice, this list of conditions and the following disclaimer.
##
##    * Redistributions in binary form must reproduce the above
##      copyright notice, this list of conditions and the following
##      disclaimer in the documentation and/or other materials provided
##      with the distribution.
##
##    * Neither the name of the University of California, Berkeley nor
##      the names of its contributors may be used to endorse or promote
##      products derived from this software without specific prior
##      written permission.
##
## THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS''
## AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
## TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
## PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS AND
## CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
## SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
## LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
## USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
## ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
## OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
## OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
## SUCH DAMAGE.

function [cest, v] = condest (varargin)

  if (nargin < 1 || nargin > 6)
    print_usage ();
  endif

  have_A = false;
  have_t = false;
  have_Afcn = false;
  have_Ainvfcn = false;

  if (isnumeric (varargin{1}))
    A = varargin{1};
    if (! issquare (A))
      error ("condest: A must be square");
    endif
    have_A = true;
    n = rows (A);
    if (nargin > 1)
      if (is_function_handle (varargin{2}))
        Ainvfcn = varargin{2};
        have_Ainvfcn = true;
        if (nargin > 2)
          t = varargin{3};
          have_t = true;
        endif
      else
        t = varargin{2};
        have_t = true;
      endif
    endif
  elseif (is_function_handle (varargin{1}))
    if (nargin == 1)
      error("condest: must provide AINVFCN when using AFCN");
    endif
    Afcn = varargin{1};
    have_Afcn = true;
    if (! is_function_handle (varargin{2}))
      error("condest: AINVFCN must be a function handle");
    endif
    Ainvfcn = varargin{2};
    have_Ainvfcn = true;
    n = Afcn ("dim", [], varargin{4:end});
    if (nargin > 2)
      t = varargin{3};
      have_t = true;
    endif
  else
    error ("condest: first argument must be a square matrix or function handle");
  endif

  if (! have_t)
    t = min (n, 5);
  endif

  ## Disable warnings which may be emitted during calculation process.
  warning ("off", "Octave:nearly-singular-matrix", "local");

  if (! have_Ainvfcn)
    ## Prepare Ainvfcn in normest1 form
    if (issparse (A))
      [L, U, P, Q] = lu (A);
      Ainvfcn = @inv_sparse_fcn;
    else
      [L, U, P] = lu (A);
      Q = [];
      Ainvfcn = @inv_full_fcn;
    endif

    ## Check for singular matrices before continuing (bug #46737)
    if (any (diag (U) == 0))
      cest = Inf;
      v = [];
      return;
    endif

    ## Initialize solver
    Ainvfcn ("init", A, L, U, P, Q);
    clear L U P Q;
  endif

  if (have_A)
    Anorm = norm (A, 1);
  else
    Anorm = normest1 (Afcn, t, [], varargin{4:end});
  endif
  [Ainv_norm, v, w] = normest1 (Ainvfcn, t, [], varargin{4:end});

  cest = Anorm * Ainv_norm;
  if (isargout (2))
    v = w / norm (w, 1);
  endif

  if (! have_Ainvfcn)
    Ainvfcn ("clear");  # clear persistent memory in subfunction
  endif

endfunction

function retval = inv_sparse_fcn (flag, x, varargin)
  ## FIXME: Sparse algorithm is less accurate than full matrix version.
  ##        See BIST test for asymmetric matrix where relative tolerance
  ##        of 1e-12 is used for sparse, but 4e-16 for full matrix.
  ##        BUT, does it really matter for an "estimate"?
  persistent Ainv Ainvt n isreal_op;

  switch (flag)
    case "dim"
      retval = n;
    case "real"
      retval = isreal_op;
    case "notransp"
      retval = Ainv * x;
    case "transp"
      retval = Ainvt * x;
    case "init"
      n = rows (x); 
      isreal_op = isreal (x);
      [L, U, P, Q] = deal (varargin{1:4});
      Ainv = Q * (U \ (L \ P));
      Ainvt = P' * (L' \ (U' \ Q'));
    case "clear"  # called to free memory at end of condest function
      clear Ainv Ainvt n isreal_op;
  endswitch

endfunction

function retval = inv_full_fcn (flag, x, varargin)
  persistent Ainv Ainvt n isreal_op;

  switch (flag)
    case "dim"
      retval = n;
    case "real"
      retval = isreal_op;
    case "notransp"
      retval = Ainv * x;
    case "transp"
      retval = Ainvt \ x;
    case "init"
      n = rows (x); 
      isreal_op = isreal (x);
      [L, U, P] = deal (varargin{1:3});
      Ainv = U \ (L \ P);
      Ainvt = P' * (L' \ U');
    case "clear"  # called to free memory at end of condest function
      clear Ainv Ainvt n isreal_op;
  endswitch

endfunction


## Note: These test bounds are very loose.  There is enough randomization to
## trigger odd cases with hilb().

%!function retval = __Afcn__ (flag, x, A, m)
%!  if (nargin == 3)
%!    m = 1;
%!  endif
%!  switch (flag)
%!    case "dim"
%!      retval = length (A);
%!    case "real"
%!      retval = isreal (A);
%!    case "notransp"
%!      retval = x; for i = 1:m, retval = A * retval;, endfor
%!    case "transp"
%!      retval = x; for i = 1:m, retval = A' * retval;, endfor
%!  endswitch
%!endfunction
%!function retval = __Ainvfcn__ (flag, x, A, m)
%!  if (nargin == 3)
%!    m = 1;
%!  endif
%!  switch (flag)
%!    case "dim"
%!      retval = length (A);
%!    case "real"
%!      retval = isreal (A);
%!    case "notransp"
%!      retval = x; for i = 1:m, retval = A \ retval;, endfor
%!    case "transp"
%!      retval = x; for i = 1:m, retval = A' \ retval;, endfor
%!  endswitch
%!endfunction

%!test
%! N = 6;
%! A = hilb (N);
%! cA = condest (A);
%! cA_test = norm (inv (A), 1) * norm (A, 1);
%! assert (cA, cA_test, -2^-8);

%!test
%! N = 12;
%! A = hilb (N);
%! [~, v] = condest (A);
%! x = A*v;
%! assert (norm (x, inf), 0, eps);

%!test
%! N = 6;
%! A = hilb (N);
%! Ainvfcn = @(flag, x) __Ainvfcn__ (flag, x, A);
%! cA = condest (A, Ainvfcn);
%! cA_test = norm (inv (A), 1) * norm (A, 1);
%! assert (cA, cA_test, -2^-6);

%!test
%! N = 6;
%! A = hilb (N);
%! Afcn = @(flag, x) __Afcn__ (flag, x, A);
%! Ainvfcn = @(flag, x) __Ainvfcn__ (flag, x, A);
%! cA = condest (Afcn, Ainvfcn);
%! cA_test = norm (inv (A), 1) * norm (A, 1);
%! assert (cA, cA_test, -2^-6);

%!test # parameters for apply and Ainvfcn functions
%! N = 6;
%! A = hilb (N);
%! m = 2;
%! cA = condest (@__Afcn__, @__Ainvfcn__, [], A, m);
%! cA_test = norm (inv (A^2), 1) * norm (A^2, 1);
%! assert (cA, cA_test, -2^-6);

## Test singular matrices
%!test <*46737>
%! A = [ 0         0         0
%!       0   3.33333 0.0833333
%!       0 0.0833333   1.66667];
%! [cest, v] = condest (A);
%! assert (cest, Inf);
%! assert (v, []);

## Test asymmetric matrices
%!test <*57968>
%! A = reshape (sqrt (0:15), 4, 4);
%! cexp = norm (A, 1) * norm (inv (A), 1);
%! cest = condest (A);
%! assert (cest, cexp, -2*eps);

%!test <*57968>
%! As = sparse (reshape (sqrt (0:15), 4, 4));
%! cexp = norm (As, 1) * norm (inv (As), 1);
%! cest = condest (As);
%! assert (cest, cexp, -1e-12);

## Test input validation
%!error <Invalid call> condest ()
%!error <Invalid call> condest (1,2,3,4,5,6,7)
%!error <A must be square> condest ([1, 2])
%!error <must provide AINVFCN when using AFCN> condest (@sin)
%!error <AINVFCN must be a function handle> condest (@sin, 1)
%!error <argument must be a square matrix or function handle> condest ({1})