view scripts/linear-algebra/ols.m @ 28240:2fb684dc2ec2

axis.m: Implement "fill" option for Matlab compatibility. * axis.m: Document that "fill" is a synonym for "normal". Place "vis3d" option in documentation table for modes which affect aspect ratio. Add strcmpi (opt, "fill") to decode opt and executed the same behavior as "normal".
author Rik <rik@octave.org>
date Fri, 24 Apr 2020 13:16:09 -0700
parents 9f9ac219896d
children 90fea9cc9caa 0a5b15007766
line wrap: on
line source

########################################################################
##
## Copyright (C) 1996-2020 The Octave Project Developers
##
## See the file COPYRIGHT.md in the top-level directory of this
## distribution or <https://octave.org/copyright/>.
##
## This file is part of Octave.
##
## Octave is free software: you can redistribute it and/or modify it
## under the terms of the GNU General Public License as published by
## the Free Software Foundation, either version 3 of the License, or
## (at your option) any later version.
##
## Octave is distributed in the hope that it will be useful, but
## WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
## GNU General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with Octave; see the file COPYING.  If not, see
## <https://www.gnu.org/licenses/>.
##
########################################################################

## -*- texinfo -*-
## @deftypefn {} {[@var{beta}, @var{sigma}, @var{r}] =} ols (@var{y}, @var{x})
## Ordinary least squares (OLS) estimation.
##
## OLS applies to the multivariate model
## @tex
## $@var{y} = @var{x}\,@var{b} + @var{e}$
## @end tex
## @ifnottex
## @w{@math{@var{y} = @var{x}*@var{b} + @var{e}}}
## @end ifnottex
## where
## @tex
## $@var{y}$ is a $t \times p$ matrix, $@var{x}$ is a $t \times k$ matrix,
## $@var{b}$ is a $k \times p$ matrix, and $@var{e}$ is a $t \times p$ matrix.
## @end tex
## @ifnottex
## @math{@var{y}} is a @math{t}-by-@math{p} matrix, @math{@var{x}} is a
## @math{t}-by-@math{k} matrix, @var{b} is a @math{k}-by-@math{p} matrix, and
## @var{e} is a @math{t}-by-@math{p} matrix.
## @end ifnottex
##
## Each row of @var{y} is a @math{p}-variate observation in which each column
## represents a variable.  Likewise, the rows of @var{x} represent
## @math{k}-variate observations or possibly designed values.  Furthermore,
## the collection of observations @var{x} must be of adequate rank, @math{k},
## otherwise @var{b} cannot be uniquely estimated.
##
## The observation errors, @var{e}, are assumed to originate from an
## underlying @math{p}-variate distribution with zero mean and
## @math{p}-by-@math{p} covariance matrix @var{S}, both constant conditioned
## on @var{x}.  Furthermore, the matrix @var{S} is constant with respect to
## each observation such that
## @tex
## $\bar{@var{e}} = 0$ and cov(vec(@var{e})) =  kron(@var{s},@var{I}).
## @end tex
## @ifnottex
## @code{mean (@var{e}) = 0} and
## @code{cov (vec (@var{e})) = kron (@var{s}, @var{I})}.
## @end ifnottex
## (For cases
## that don't meet this criteria, such as autocorrelated errors, see
## generalized least squares, gls, for more efficient estimations.)
##
## The return values @var{beta}, @var{sigma}, and @var{r} are defined as
## follows.
##
## @table @var
## @item beta
## The OLS estimator for matrix @var{b}.
## @tex
## @var{beta} is calculated directly via $(@var{x}^T@var{x})^{-1} @var{x}^T
## @var{y}$ if the matrix $@var{x}^T@var{x}$ is of full rank.
## @end tex
## @ifnottex
## @var{beta} is calculated directly via
## @code{inv (@var{x}'*@var{x}) * @var{x}' * @var{y}} if the matrix
## @code{@var{x}'*@var{x}} is of full rank.
## @end ifnottex
## Otherwise, @code{@var{beta} = pinv (@var{x}) * @var{y}} where
## @code{pinv (@var{x})} denotes the pseudoinverse of @var{x}.
##
## @item sigma
## The OLS estimator for the matrix @var{s},
##
## @example
## @group
## @var{sigma} = (@var{y}-@var{x}*@var{beta})' * (@var{y}-@var{x}*@var{beta}) / (@math{t}-rank(@var{x}))
## @end group
## @end example
##
## @item r
## The matrix of OLS residuals, @code{@var{r} = @var{y} - @var{x}*@var{beta}}.
## @end table
## @seealso{gls, pinv}
## @end deftypefn

function [beta, sigma, r] = ols (y, x)

  if (nargin != 2)
    print_usage ();
  endif

  if (! (isnumeric (x) && isnumeric (y)))
    error ("ols: X and Y must be numeric matrices or vectors");
  endif

  if (ndims (x) != 2 || ndims (y) != 2)
    error ("ols: X and Y must be 2-D matrices or vectors");
  endif

  [nr, nc] = size (x);
  [ry, cy] = size (y);
  if (nr != ry)
    error ("ols: number of rows of X and Y must be equal");
  endif

  if (isinteger (x))
    x = double (x);
  endif
  if (isinteger (y))
    y = double (y);
  endif

  ## Start of algorithm
  z = x' * x;
  [u, p] = chol (z);

  if (p)
    beta = pinv (x) * y;
  else
    beta = u \ (u' \ (x' * y));
  endif

  if (isargout (2) || isargout (3))
    r = y - x * beta;
  endif
  if (isargout (2))

    ## z is of full rank, avoid the SVD in rnk
    if (p == 0)
      rnk = columns (z);
    else
      rnk = rank (z);
    endif

    sigma = r' * r / (nr - rnk);
  endif

endfunction


%!test
%! x = [1:5]';
%! y = 3*x + 2;
%! x = [x, ones(5,1)];
%! assert (ols (y,x), [3; 2], 50*eps);

%!test
%! x = [1, 2; 3, 4];
%! y = [1; 2];
%! [b, s, r] = ols (x, y);
%! assert (b, [1.4, 2], 2*eps);
%! assert (s, [0.2, 0; 0, 0], 2*eps);
%! assert (r, [-0.4, 0; 0.2, 0], 2*eps);

%!test
%! x = [1, 2; 3, 4];
%! y = [1; 2];
%! [b, s] = ols (x, y);
%! assert (b, [1.4, 2], 2*eps);
%! assert (s, [0.2, 0; 0, 0], 2*eps);

%!test
%! x = [1, 2; 3, 4];
%! y = [1; 2];
%! b = ols (x, y);
%! assert (b, [1.4, 2], 2*eps);

## Test input validation
%!error ols ()
%!error ols (1)
%!error ols (1, 2, 3)
%!error ols ([true, true], [1, 2])
%!error ols ([1, 2], [true, true])
%!error ols (ones (2,2,2), ones (2,2))
%!error ols (ones (2,2), ones (2,2,2))
%!error ols (ones (1,2), ones (2,2))