view scripts/specfun/expint.m @ 28240:2fb684dc2ec2

axis.m: Implement "fill" option for Matlab compatibility. * axis.m: Document that "fill" is a synonym for "normal". Place "vis3d" option in documentation table for modes which affect aspect ratio. Add strcmpi (opt, "fill") to decode opt and executed the same behavior as "normal".
author Rik <rik@octave.org>
date Fri, 24 Apr 2020 13:16:09 -0700
parents bd51beb6205e
children d8318c12d903 0a5b15007766
line wrap: on
line source

########################################################################
##
## Copyright (C) 2018-2020 The Octave Project Developers
##
## See the file COPYRIGHT.md in the top-level directory of this
## distribution or <https://octave.org/copyright/>.
##
## This file is part of Octave.
##
## Octave is free software: you can redistribute it and/or modify it
## under the terms of the GNU General Public License as published by
## the Free Software Foundation, either version 3 of the License, or
## (at your option) any later version.
##
## Octave is distributed in the hope that it will be useful, but
## WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
## GNU General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with Octave; see the file COPYING.  If not, see
## <https://www.gnu.org/licenses/>.
##
########################################################################

## -*- texinfo -*-
## @deftypefn {} {} expint (@var{x})
## Compute the exponential integral.
##
## The exponential integral is defined as:
##
## @tex
## $$
## {\rm E_1} (x) = \int_x^\infty {e^{-t} \over t} dt
## $$
## @end tex
## @ifnottex
##
## @example
## @group
##            +oo
##           /
##           | exp (-t)
## E_1 (x) = | -------- dt
##           |    t
##           /
##          x
## @end group
## @end example
##
## @end ifnottex
##
## Note: For compatibility, this function uses the @sc{matlab} definition
## of the exponential integral.  Most other sources refer to this particular
## value as @math{E_1 (x)}, and the exponential integral as
## @tex
## $$
## {\rm Ei} (x) = - \int_{-x}^\infty {e^{-t} \over t} dt.
## $$
## @end tex
## @ifnottex
##
## @example
## @group
##             +oo
##            /
##            | exp (-t)
## Ei (x) = - | -------- dt
##            |    t
##            /
##          -x
## @end group
## @end example
##
## @end ifnottex
## The two definitions are related, for positive real values of @var{x}, by
## @tex
## $
## E_1 (-x) = -{\rm Ei} (x) - i\pi.
## $
## @end tex
## @ifnottex
## @w{@code{E_1 (-x) = -Ei (x) - i*pi}}.
## @end ifnottex
##
## References:
##
## @nospell{M. Abramowitz and I.A. Stegun},
## @cite{Handbook of Mathematical Functions}, 1964.
##
## @nospell{N. Bleistein and R.A. Handelsman},
## @cite{Asymptotic expansions of integrals}, 1986.
##
## @seealso{cosint, sinint, exp}
## @end deftypefn

function E1 = expint (x)

  if (nargin != 1)
    print_usage ();
  endif

  if (! isnumeric (x))
    error ("expint: X must be numeric");
  endif

  ## Convert to floating point if necessary
  if (isinteger (x))
    x = double (x);
  endif

  orig_sparse = issparse (x);
  orig_sz = size (x);
  x = x(:);  # convert to column vector

  ## Initialize the result
  if (isreal (x) && x >= 0)
    E1 = zeros (size (x), class (x));
  else
    E1 = complex (zeros (size (x), class (x)));
  endif
  tol = eps (class (x));

  ## Divide the input into 3 regions and apply a different algorithm for each.
  ## s = series expansion, cf = continued fraction, a = asymptotic series
  s_idx = (((real (x) + 19.5).^ 2 ./ (20.5^2) + ...
            imag (x).^2 ./ (10^2)) <= 1) ...
          | (real (x) < 0 & abs (imag (x)) <= 1e-8);
  cf_idx = ((((real (x) + 1).^2 ./ (38^2) + ...
              imag (x).^2 ./ (40^2)) <= 1) ...
            & (! s_idx)) & (real (x) <= 35);
  a_idx = (! s_idx) & (! cf_idx);
  x_s  = x(s_idx);
  x_cf = x(cf_idx);
  x_a  = x(a_idx);

  ## Series expansion
  ## Abramowitz, Stegun, "Handbook of Mathematical Functions",
  ## formula 5.1.11, p 229.
  ## FIXME: Why so long?  IEEE double doesn't have this much precision.
  gm = 0.577215664901532860606512090082402431042159335;
  e1_s = -gm - log (x_s);
  res = -x_s;
  ssum = res;
  k = 1;
  todo = true (size (res));
  while (k < 1e3 && any (todo))
    res(todo) .*= (k * (- x_s(todo)) / ((k + 1) ^ 2));
    ssum(todo) += res(todo);
    k += 1;
    todo = (abs (res) > (tol * abs (ssum)));
  endwhile
  e1_s -= ssum;

  ## Continued fraction expansion,
  ## Abramowitz, Stegun, "Handbook of Mathematical Functions",
  ## formula 5.1.22, p 229.
  ## Modified Lentz's algorithm, from "Numerical recipes in Fortran 77" p.165.

  e1_cf = exp (-x_cf) .* __expint__ (x_cf);

  ## Remove spurious imaginary part if needed (__expint__ works automatically
  ## with complex values)

  if (isreal (x_cf) && x_cf >= 0)
    e1_cf = real (e1_cf);
  endif

  ## Asymptotic series, from N. Bleistein and R.A. Handelsman
  ## "Asymptotic expansion of integrals", pages 1-4.
  e1_a = exp (-x_a) ./ x_a;
  ssum = res = ones (size (x_a), class (x_a));
  k = 0;
  todo = true (size (x_a));
  while (k < 1e3 && any (todo))
    res(todo) ./= (- x_a(todo) / (k + 1));
    ssum(todo) += res(todo);
    k += 1;
    todo = abs (x_a) > k;
  endwhile
  e1_a .*= ssum;

  ## Combine results from each region into final output
  E1(s_idx)  = e1_s;
  E1(cf_idx) = e1_cf;
  E1(a_idx)  = e1_a;

  ## Restore shape and sparsity of input
  E1 = reshape (E1, orig_sz);
  if (orig_sparse)
    E1 = sparse (E1);
  endif

endfunction


## The following values were computed with the Octave symbolic package
%!test
%! X = [-50 - 50i  -30 - 50i  -10 - 50i    5 - 50i   15 - 50i   25 - 50i
%!      -50 - 30i  -30 - 30i  -10 - 30i    5 - 30i   15 - 30i   25 - 30i
%!      -50 - 10i  -30 - 10i  -10 - 10i    5 - 10i   15 - 10i   25 - 10i
%!      -50 +  5i  -30 +  5i  -10 +  5i    5 +  5i   15 +  5i   25 +  5i
%!      -50 + 15i  -30 + 15i  -10 + 15i    5 + 15i   15 + 15i   25 + 15i
%!      -50 + 25i  -30 + 25i  -10 + 25i    5 + 25i   15 + 25i   25 + 25i];
%! y_exp = [ -3.61285286166493e+19 + 6.46488018613387e+19i, ...
%!           -4.74939752018180e+10 + 1.78647798300364e+11i, ...
%!            3.78788822381261e+01 + 4.31742823558278e+02i, ...
%!            5.02062497548626e-05 + 1.23967883532795e-04i, ...
%!            3.16785290137650e-09 + 4.88866651583182e-09i, ...
%!            1.66999261039533e-13 + 1.81161508735941e-13i;
%!            3.47121527628275e+19 + 8.33104448629260e+19i, ...
%!            1.54596484273693e+11 + 2.04179357837414e+11i, ...
%!            6.33946547999647e+02 + 3.02965459323125e+02i, ...
%!            2.19834747595065e-04 - 9.25266900230165e-06i, ...
%!            8.49515487435091e-09 - 2.95133588338825e-09i, ...
%!            2.96635342439717e-13 - 1.85401806861382e-13i;
%!            9.65535916388246e+19 + 3.78654062133933e+19i, ...
%!            3.38477774418380e+11 + 8.37063899960569e+10i, ...
%!            1.57615042657685e+03 - 4.33777639047543e+02i, ...
%!            2.36176542789578e-05 - 5.75861972980636e-04i, ...
%!           -6.83624588479039e-09 - 1.47230889442175e-08i, ...
%!           -2.93020801760942e-13 - 4.03912221595793e-13i;
%!           -1.94572937469407e+19 - 1.03494929263031e+20i, ...
%!           -4.22385087573180e+10 - 3.61103191095041e+11i, ...
%!            4.89771220858552e+02 - 2.09175729060712e+03i, ...
%!            7.26650666035639e-04 + 4.71027801635222e-04i, ...
%!            1.02146578536128e-08 + 1.51813977370467e-08i, ...
%!            2.41628751621686e-13 + 4.66309048729523e-13i;
%!            5.42351559144068e+19 + 8.54503231614651e+19i, ...
%!            1.22886461074544e+11 + 3.03555953589323e+11i, ...
%!           -2.13050339387819e+02 + 1.23853666784218e+03i, ...
%!           -3.68087391884738e-04 + 1.94003994408861e-04i, ...
%!           -1.39355838231763e-08 + 6.57189276453356e-10i, ...
%!           -4.55133112151501e-13 - 8.46035902535333e-14i;
%!           -7.75482228205081e+19 - 5.36017490438329e+19i, ...
%!           -1.85284579257329e+11 - 2.08761110392897e+11i, ...
%!           -1.74210199269860e+02 - 8.09467914953486e+02i, ...
%!            9.40470496160143e-05 - 2.44265223110736e-04i, ...
%!            6.64487526601190e-09 - 7.87242868014498e-09i, ...
%!            3.10273337426175e-13 - 2.28030229776792e-13i];
%! assert (expint (X), y_exp, -1e-14);

## Exceptional values (-Inf, Inf, NaN, 0, 0.37250741078)
%!test
%! x = [-Inf; Inf; NaN; 0; -0.3725074107813668];
%! y_exp = [-Inf - i*pi; 0; NaN; Inf; 0 - i*pi];
%! y = expint (x);
%! assert (y, y_exp, 5*eps);

%!test <*53351>
%! assert (expint (32.5 + 1i),
%!         1.181108930758065e-16 - 1.966348533426658e-16i, -4*eps);
%! assert (expint (44 + 1i),
%!         9.018757389858152e-22 - 1.475771020004195e-21i, -4*eps);

%!test <*47738>
%! assert (expint (10i), 0.0454564330044554 + 0.0875512674239774i, -4*eps);

## Test preservation or conversion of the class
%!assert (class (expint (single (1))), "single")
%!assert (class (expint (int8 (1))), "double")
%!assert (class (expint (int16 (1))), "double")
%!assert (class (expint (int32 (1))), "double")
%!assert (class (expint (int64 (1))), "double")
%!assert (class (expint (uint8 (1))), "double")
%!assert (class (expint (uint16 (1))), "double")
%!assert (class (expint (uint32 (1))), "double")
%!assert (class (expint (uint64 (1))), "double")
%!assert (issparse (expint (sparse (1))))

## Test on the correct Image set
%!assert (isreal (expint (linspace (0, 100))))
%!assert (! isreal (expint (-1)))

## Test input validation
%!error expint ()
%!error expint (1,2)
%!error <X must be numeric> expint ("1")