view scripts/specfun/factorial.m @ 28240:2fb684dc2ec2

axis.m: Implement "fill" option for Matlab compatibility. * axis.m: Document that "fill" is a synonym for "normal". Place "vis3d" option in documentation table for modes which affect aspect ratio. Add strcmpi (opt, "fill") to decode opt and executed the same behavior as "normal".
author Rik <rik@octave.org>
date Fri, 24 Apr 2020 13:16:09 -0700
parents bd51beb6205e
children d8318c12d903 0a5b15007766
line wrap: on
line source

########################################################################
##
## Copyright (C) 2000-2020 The Octave Project Developers
##
## See the file COPYRIGHT.md in the top-level directory of this
## distribution or <https://octave.org/copyright/>.
##
## This file is part of Octave.
##
## Octave is free software: you can redistribute it and/or modify it
## under the terms of the GNU General Public License as published by
## the Free Software Foundation, either version 3 of the License, or
## (at your option) any later version.
##
## Octave is distributed in the hope that it will be useful, but
## WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
## GNU General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with Octave; see the file COPYING.  If not, see
## <https://www.gnu.org/licenses/>.
##
########################################################################

## -*- texinfo -*-
## @deftypefn {} {} factorial (@var{n})
## Return the factorial of @var{n} where @var{n} is a real non-negative
## integer.
##
## If @var{n} is a scalar, this is equivalent to @code{prod (1:@var{n})}.  For
## vector or matrix arguments, return the factorial of each element in the
## array.
##
## For non-integers see the generalized factorial function @code{gamma}.
## Note that the factorial function grows large quite quickly, and even
## with double precision values overflow will occur if @var{n} > 171.  For
## such cases consider @code{gammaln}.
## @seealso{prod, gamma, gammaln}
## @end deftypefn

function x = factorial (n)

  if (nargin != 1)
    print_usage ();
  elseif (! isreal (n) || any (n(:) < 0 | n(:) != fix (n(:))))
    error ("factorial: all N must be real non-negative integers");
  endif

  x = round (gamma (n+1));

  ## FIXME: Matlab returns an output of the same type as the input.
  ## This doesn't seem particularly worth copying--for example uint8 would
  ## saturate for n > 5.  If desired, however, the following code could be
  ## uncommented.
  # if (! isfloat (x))
  #   x = cast (x, class (n));
  # endif

endfunction


%!assert (factorial (5), prod (1:5))
%!assert (factorial ([1,2;3,4]), [1,2;6,24])
%!assert (factorial (70), exp (sum (log (1:70))), -128*eps)
%!assert (factorial (0), 1)

%!error factorial ()
%!error factorial (1,2)
%!error <must be real non-negative integers> factorial (2i)
%!error <must be real non-negative integers> factorial (-3)
%!error <must be real non-negative integers> factorial (5.5)