view scripts/specfun/legendre.m @ 28240:2fb684dc2ec2

axis.m: Implement "fill" option for Matlab compatibility. * axis.m: Document that "fill" is a synonym for "normal". Place "vis3d" option in documentation table for modes which affect aspect ratio. Add strcmpi (opt, "fill") to decode opt and executed the same behavior as "normal".
author Rik <rik@octave.org>
date Fri, 24 Apr 2020 13:16:09 -0700
parents a4268efb7334
children 28de41192f3c 0a5b15007766
line wrap: on
line source

########################################################################
##
## Copyright (C) 2000-2020 The Octave Project Developers
##
## See the file COPYRIGHT.md in the top-level directory of this
## distribution or <https://octave.org/copyright/>.
##
## This file is part of Octave.
##
## Octave is free software: you can redistribute it and/or modify it
## under the terms of the GNU General Public License as published by
## the Free Software Foundation, either version 3 of the License, or
## (at your option) any later version.
##
## Octave is distributed in the hope that it will be useful, but
## WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
## GNU General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with Octave; see the file COPYING.  If not, see
## <https://www.gnu.org/licenses/>.
##
########################################################################

## -*- texinfo -*-
## @deftypefn  {} {@var{l} =} legendre (@var{n}, @var{x})
## @deftypefnx {} {@var{l} =} legendre (@var{n}, @var{x}, @var{normalization})
## Compute the associated Legendre function of degree @var{n} and order
## @var{m} = 0 @dots{} @var{n}.
##
## The value @var{n} must be a real non-negative integer.
##
## @var{x} is a vector with real-valued elements in the range [-1, 1].
##
## The optional argument @var{normalization} may be one of @qcode{"unnorm"},
## @qcode{"sch"}, or @qcode{"norm"}.  The default if no normalization is given
## is @qcode{"unnorm"}.
##
## When the optional argument @var{normalization} is @qcode{"unnorm"}, compute
## the associated Legendre function of degree @var{n} and order @var{m} and
## return all values for @var{m} = 0 @dots{} @var{n}.  The return value has one
## dimension more than @var{x}.
##
## The associated Legendre function of degree @var{n} and order @var{m}:
##
## @tex
## $$
## P^m_n(x) = (-1)^m (1-x^2)^{m/2}{d^m\over {dx^m}}P_n (x)
## $$
## @end tex
## @ifnottex
##
## @example
## @group
##  m         m      2  m/2   d^m
## P(x) = (-1) * (1-x  )    * ----  P(x)
##  n                         dx^m   n
## @end group
## @end example
##
## @end ifnottex
##
## @noindent
## with Legendre polynomial of degree @var{n}:
##
## @tex
## $$
## P(x) = {1\over{2^n n!}}\biggl({d^n\over{dx^n}}(x^2 - 1)^n\biggr)
## $$
## @end tex
## @ifnottex
##
## @example
## @group
##           1    d^n   2    n
## P(x) = ------ [----(x - 1) ]
##  n     2^n n!  dx^n
## @end group
## @end example
##
## @end ifnottex
##
## @noindent
## @code{legendre (3, [-1.0, -0.9, -0.8])} returns the matrix:
##
## @example
## @group
##  x  |   -1.0   |   -0.9   |   -0.8
## ------------------------------------
## m=0 | -1.00000 | -0.47250 | -0.08000
## m=1 |  0.00000 | -1.99420 | -1.98000
## m=2 |  0.00000 | -2.56500 | -4.32000
## m=3 |  0.00000 | -1.24229 | -3.24000
## @end group
## @end example
##
## When the optional argument @var{normalization} is @qcode{"sch"}, compute
## the Schmidt semi-normalized associated Legendre function.  The Schmidt
## semi-normalized associated Legendre function is related to the unnormalized
## Legendre functions by the following:
##
## For Legendre functions of degree @var{n} and order 0:
##
## @tex
## $$
## SP^0_n (x) = P^0_n (x)
## $$
## @end tex
## @ifnottex
##
## @example
## @group
##   0      0
## SP(x) = P(x)
##   n      n
## @end group
## @end example
##
## @end ifnottex
##
## For Legendre functions of degree n and order m:
##
## @tex
## $$
## SP^m_n (x) = P^m_n (x)(-1)^m\biggl({2(n-m)!\over{(n+m)!}}\biggl)^{0.5}
## $$
## @end tex
## @ifnottex
##
## @example
## @group
##   m      m         m    2(n-m)! 0.5
## SP(x) = P(x) * (-1)  * [-------]
##   n      n              (n+m)!
## @end group
## @end example
##
## @end ifnottex
##
## When the optional argument @var{normalization} is @qcode{"norm"}, compute
## the fully normalized associated Legendre function.  The fully normalized
## associated Legendre function is related to the unnormalized associated
## Legendre functions by the following:
##
## For Legendre functions of degree @var{n} and order @var{m}
##
## @tex
## $$
## NP^m_n (x) = P^m_n (x)(-1)^m\biggl({(n+0.5)(n-m)!\over{(n+m)!}}\biggl)^{0.5}
## $$
## @end tex
## @ifnottex
##
## @example
## @group
##   m      m         m    (n+0.5)(n-m)! 0.5
## NP(x) = P(x) * (-1)  * [-------------]
##   n      n                  (n+m)!
## @end group
## @end example
##
## @end ifnottex
## @end deftypefn

function retval = legendre (n, x, normalization)

  persistent warned_overflow = false;

  if (nargin < 2 || nargin > 3)
    print_usage ();
  endif

  if (! isreal (n) || ! isscalar (n) || n < 0 || n != fix (n))
    error ("legendre: N must be a real non-negative integer");
  elseif (! isreal (x) || any (x(:) < -1 | x(:) > 1))
    error ("legendre: X must be real-valued vector in the range -1 <= X <= 1");
  endif

  if (nargin == 3)
    normalization = lower (normalization);
  else
    normalization = "unnorm";
  endif

  unnorm = false;
  switch (normalization)
    case "unnorm"
      scale = 1;
      unnorm = true;
    case "norm"
      scale = sqrt (n+0.5);
    case "sch"
      scale = sqrt (2);
    otherwise
      error ('legendre: NORMALIZATION option must be "unnorm", "norm", or "sch"');
  endswitch

  scale *= ones (size (x));

  ## Based on the recurrence relation below
  ##            m                 m              m
  ## (n-m+1) * P (x) = (2*n+1)*x*P (x)  - (n+m)*P (x)
  ##            n+1               n              n-1
  ## https://en.wikipedia.org/wiki/Associated_Legendre_polynomials

  overflow = false;
  retval = zeros ([n+1, size(x)]);
  for m = 1:n
    lpm1 = scale;
    lpm2 = (2*m-1) .* x .* scale;
    lpm3 = lpm2;
    for k = m+1:n
      lpm3a = (2*k-1) .* x .* lpm2;
      lpm3b = (k+m-2) .* lpm1;
      lpm3 = (lpm3a - lpm3b) / (k-m+1);
      lpm1 = lpm2;
      lpm2 = lpm3;
      if (! warned_overflow)
        if (   any (abs (lpm3a) > realmax)
            || any (abs (lpm3b) > realmax)
            || any (abs (lpm3)  > realmax))
          overflow = true;
        endif
      endif
    endfor
    retval(m,:) = lpm3(:);
    if (unnorm)
      scale *= -(2*m-1);
    else  # normalization = "sch" or "norm"
      scale *= (2*m-1) / sqrt ((n-m+1)*(n+m));
    endif
    scale .*= sqrt (1-x.^2);
  endfor

  retval(n+1,:) = scale(:);

  if (isvector (x))
    ## vector case is special
    retval = reshape (retval, n + 1, length (x));
  endif

  if (strcmp (normalization, "sch"))
    retval(1,:) ./= sqrt (2);
  endif

  if (overflow && ! warned_overflow)
    warning ("legendre: overflow - results may be unstable for high orders");
    warned_overflow = true;
  endif

endfunction


%!test
%! result = legendre (3, [-1.0 -0.9 -0.8]);
%! expected = [
%!    -1.00000  -0.47250  -0.08000
%!     0.00000  -1.99420  -1.98000
%!     0.00000  -2.56500  -4.32000
%!     0.00000  -1.24229  -3.24000
%! ];
%! assert (result, expected, 1e-5);

%!test
%! result = legendre (3, [-1.0 -0.9 -0.8], "sch");
%! expected = [
%!    -1.00000  -0.47250  -0.08000
%!     0.00000   0.81413   0.80833
%!    -0.00000  -0.33114  -0.55771
%!     0.00000   0.06547   0.17076
%! ];
%! assert (result, expected, 1e-5);

%!test
%! result = legendre (3, [-1.0 -0.9 -0.8], "norm");
%! expected = [
%!    -1.87083  -0.88397  -0.14967
%!     0.00000   1.07699   1.06932
%!    -0.00000  -0.43806  -0.73778
%!     0.00000   0.08661   0.22590
%! ];
%! assert (result, expected, 1e-5);

%!test
%! result = legendre (151, 0);
%! ## Don't compare to "-Inf" since it would fail on 64 bit systems.
%! assert (result(end) < -1.7976e308 && all (isfinite (result(1:end-1))));

%!test
%! result = legendre (150, 0);
%! ## This agrees with Matlab's result.
%! assert (result(end), 3.7532741115719e+306, 0.0000000000001e+306);

%!test
%! result = legendre (0, 0:0.1:1);
%! assert (result, full (ones (1,11)));

%!test
%! ## Test matrix input
%! result = legendre (3, [-1,0,1;1,0,-1]);
%! expected(:,:,1) = [-1,1;0,0;0,0;0,0];
%! expected(:,:,2) = [0,0;1.5,1.5;0,0;-15,-15];
%! expected(:,:,3) = [1,-1;0,0;0,0;0,0];
%! assert (result, expected);

%!test
%! result = legendre (3, [-1,0,1;1,0,-1]');
%! expected(:,:,1) = [-1,0,1;0,1.5,0;0,0,0;0,-15,0];
%! expected(:,:,2) = [1,0,-1;0,1.5,0;0,0,0;0,-15,0];
%! assert (result, expected);

## Test input validation
%!error legendre ()
%!error legendre (1)
%!error legendre (1,2,3,4)
%!error <must be a real non-negative integer> legendre (i, [-1, 0, 1])
%!error <must be a real non-negative integer> legendre ([1, 2], [-1, 0, 1])
%!error <must be a real non-negative integer> legendre (-1, [-1, 0, 1])
%!error <must be a real non-negative integer> legendre (1.1, [-1, 0, 1])
%!error <must be real-valued vector> legendre (1, [-1+i, 0, 1])
%!error <in the range -1 .= X .= 1> legendre (1, [-2, 0, 1])
%!error <in the range -1 .= X .= 1> legendre (1, [-1, 0, 2])
%!error <NORMALIZATION option must be> legendre (1, [-1, 0, 1], "badnorm")