view libinterp/corefcn/eig.cc @ 22407:34ce5be04942

maint: Style check C++ code in libinterp/. * build-env.h, build-env.in.cc, builtins.h, Cell.cc, Cell.h, __contourc__.cc, __dispatch__.cc, __dsearchn__.cc, __ilu__.cc, __lin_interpn__.cc, __luinc__.cc, __magick_read__.cc, __pchip_deriv__.cc, __qp__.cc, balance.cc, base-text-renderer.h, besselj.cc, bitfcns.cc, bsxfun.cc, c-file-ptr-stream.cc, c-file-ptr-stream.h, call-stack.cc, call-stack.h, cdisplay.c, cdisplay.h, cellfun.cc, coct-hdf5-types.c, comment-list.cc, comment-list.h, conv2.cc, daspk.cc, dasrt.cc, dassl.cc, data.cc, data.h, debug.cc, debug.h, defaults.cc, defaults.in.h, defun-dld.h, defun-int.h, defun.h, det.cc, dirfns.cc, dirfns.h, display.cc, display.h, dlmread.cc, dynamic-ld.cc, dynamic-ld.h, eig.cc, error.cc, error.h, errwarn.h, event-queue.cc, event-queue.h, fft.cc, fft2.cc, fftn.cc, file-io.cc, file-io.h, filter.cc, find.cc, ft-text-renderer.cc, ft-text-renderer.h, gammainc.cc, gcd.cc, getgrent.cc, getpwent.cc, givens.cc, gl-render.cc, gl-render.h, gl2ps-print.cc, gl2ps-print.h, graphics.cc, graphics.in.h, gripes.h, gsvd.cc, hash.cc, help.cc, help.h, hess.cc, hex2num.cc, hook-fcn.cc, hook-fcn.h, input.cc, input.h, interpreter.cc, interpreter.h, inv.cc, jit-ir.cc, jit-ir.h, jit-typeinfo.cc, jit-typeinfo.h, jit-util.cc, jit-util.h, kron.cc, load-path.cc, load-path.h, load-save.cc, load-save.h, lookup.cc, ls-ascii-helper.cc, ls-ascii-helper.h, ls-hdf5.cc, ls-hdf5.h, ls-mat-ascii.cc, ls-mat-ascii.h, ls-mat4.cc, ls-mat4.h, ls-mat5.h, ls-oct-binary.cc, ls-oct-binary.h, ls-oct-text.cc, ls-oct-text.h, ls-utils.cc, ls-utils.h, lsode.cc, lu.cc, matrix_type.cc, max.cc, mex.cc, mex.h, mexproto.h, mgorth.cc, mxarray.in.h, nproc.cc, oct-errno.h, oct-errno.in.cc, oct-fstrm.cc, oct-fstrm.h, oct-handle.h, oct-hdf5-types.cc, oct-hdf5-types.h, oct-hdf5.h, oct-hist.cc, oct-hist.h, oct-iostrm.cc, oct-iostrm.h, oct-lvalue.cc, oct-lvalue.h, oct-map.h, oct-obj.h, oct-opengl.h, oct-prcstrm.cc, oct-prcstrm.h, oct-procbuf.cc, oct-procbuf.h, oct-stdstrm.h, oct-stream.cc, oct-stream.h, oct-strstrm.cc, oct-strstrm.h, oct.h, octave-default-image.h, octave-link.h, octave-preserve-stream-state.h, ordschur.cc, pager.cc, pager.h, pinv.cc, pr-output.cc, pr-output.h, procstream.cc, procstream.h, profiler.h, psi.cc, pt-jit.cc, pt-jit.h, quad.cc, quadcc.cc, qz.cc, rand.cc, rcond.cc, regexp.cc, schur.cc, sighandlers.cc, sighandlers.h, sparse-xdiv.cc, sparse-xdiv.h, sparse-xpow.cc, sparse-xpow.h, sparse.cc, spparms.cc, sqrtm.cc, str2double.cc, strfind.cc, strfns.cc, sub2ind.cc, svd.cc, sylvester.cc, symtab.cc, symtab.h, syscalls.cc, sysdep.cc, sysdep.h, text-renderer.cc, text-renderer.h, time.cc, toplev.cc, toplev.h, tril.cc, tsearch.cc, txt-eng.cc, txt-eng.h, typecast.cc, urlwrite.cc, utils.cc, utils.h, variables.cc, variables.h, workspace-element.h, xdiv.cc, xdiv.h, xnorm.cc, xnorm.h, xpow.cc, xpow.h, zfstream.cc, zfstream.h, deprecated-config.h, __delaunayn__.cc, __eigs__.cc, __fltk_uigetfile__.cc, __glpk__.cc, __init_fltk__.cc, __init_gnuplot__.cc, __osmesa_print__.cc, __voronoi__.cc, amd.cc, audiodevinfo.cc, audioread.cc, ccolamd.cc, chol.cc, colamd.cc, convhulln.cc, dmperm.cc, fftw.cc, gzip.cc, oct-qhull.h, qr.cc, symbfact.cc, symrcm.cc, liboctinterp-build-info.h, liboctinterp-build-info.in.cc, ov-base-diag.h, ov-base-int.cc, ov-base-int.h, ov-base-mat.cc, ov-base-mat.h, ov-base-scalar.h, ov-base-sparse.cc, ov-base-sparse.h, ov-base.cc, ov-base.h, ov-bool-mat.cc, ov-bool-mat.h, ov-bool-sparse.cc, ov-bool-sparse.h, ov-bool.cc, ov-bool.h, ov-builtin.cc, ov-builtin.h, ov-cell.cc, ov-cell.h, ov-ch-mat.cc, ov-ch-mat.h, ov-class.cc, ov-class.h, ov-classdef.cc, ov-classdef.h, ov-colon.cc, ov-colon.h, ov-complex.cc, ov-complex.h, ov-cs-list.h, ov-cx-diag.cc, ov-cx-diag.h, ov-cx-mat.cc, ov-cx-mat.h, ov-cx-sparse.cc, ov-cx-sparse.h, ov-dld-fcn.cc, ov-dld-fcn.h, ov-fcn-handle.cc, ov-fcn-handle.h, ov-fcn-inline.cc, ov-fcn-inline.h, ov-fcn.cc, ov-fcn.h, ov-float.cc, ov-float.h, ov-flt-complex.cc, ov-flt-complex.h, ov-flt-cx-diag.cc, ov-flt-cx-diag.h, ov-flt-cx-mat.cc, ov-flt-cx-mat.h, ov-flt-re-diag.cc, ov-flt-re-diag.h, ov-flt-re-mat.cc, ov-flt-re-mat.h, ov-int-traits.h, ov-int16.cc, ov-int16.h, ov-int32.cc, ov-int32.h, ov-int64.cc, ov-int64.h, ov-int8.cc, ov-int8.h, ov-intx.h, ov-java.cc, ov-java.h, ov-lazy-idx.cc, ov-lazy-idx.h, ov-mex-fcn.cc, ov-mex-fcn.h, ov-null-mat.cc, ov-null-mat.h, ov-oncleanup.cc, ov-oncleanup.h, ov-perm.cc, ov-perm.h, ov-range.cc, ov-range.h, ov-re-diag.cc, ov-re-diag.h, ov-re-mat.cc, ov-re-mat.h, ov-re-sparse.cc, ov-re-sparse.h, ov-scalar.cc, ov-scalar.h, ov-str-mat.cc, ov-str-mat.h, ov-struct.cc, ov-struct.h, ov-typeinfo.cc, ov-typeinfo.h, ov-uint16.cc, ov-uint16.h, ov-uint32.cc, ov-uint32.h, ov-uint64.cc, ov-uint64.h, ov-uint8.cc, ov-uint8.h, ov-usr-fcn.cc, ov-usr-fcn.h, ov.h, ovl.cc, ovl.h, octave.cc, octave.h, op-b-b.cc, op-b-bm.cc, op-b-sbm.cc, op-bm-b.cc, op-bm-bm.cc, op-bm-sbm.cc, op-cdm-cdm.cc, op-cell.cc, op-chm.cc, op-class.cc, op-cm-cm.cc, op-cm-cs.cc, op-cm-m.cc, op-cm-pm.cc, op-cm-s.cc, op-cm-scm.cc, op-cm-sm.cc, op-cs-cm.cc, op-cs-cs.cc, op-cs-m.cc, op-cs-s.cc, op-cs-scm.cc, op-cs-sm.cc, op-dm-dm.cc, op-dm-scm.cc, op-dm-sm.cc, op-dm-template.cc, op-dms-template.cc, op-fcdm-fcdm.cc, op-fcm-fcm.cc, op-fcm-fcs.cc, op-fcm-fm.cc, op-fcm-fs.cc, op-fcm-pm.cc, op-fcn.cc, op-fcs-fcm.cc, op-fcs-fcs.cc, op-fcs-fm.cc, op-fcs-fs.cc, op-fdm-fdm.cc, op-fm-fcm.cc, op-fm-fcs.cc, op-fm-fm.cc, op-fm-fs.cc, op-fm-pm.cc, op-fs-fcm.cc, op-fs-fcs.cc, op-fs-fm.cc, op-fs-fs.cc, op-i16-i16.cc, op-i32-i32.cc, op-i64-i64.cc, op-i8-i8.cc, op-int-concat.cc, op-int.h, op-m-cm.cc, op-m-cs.cc, op-m-m.cc, op-m-pm.cc, op-m-s.cc, op-m-scm.cc, op-m-sm.cc, op-pm-cm.cc, op-pm-fcm.cc, op-pm-fm.cc, op-pm-m.cc, op-pm-pm.cc, op-pm-scm.cc, op-pm-sm.cc, op-pm-template.cc, op-range.cc, op-s-cm.cc, op-s-cs.cc, op-s-m.cc, op-s-s.cc, op-s-scm.cc, op-s-sm.cc, op-sbm-b.cc, op-sbm-bm.cc, op-sbm-sbm.cc, op-scm-cm.cc, op-scm-cs.cc, op-scm-m.cc, op-scm-s.cc, op-scm-scm.cc, op-scm-sm.cc, op-sm-cm.cc, op-sm-cs.cc, op-sm-m.cc, op-sm-s.cc, op-sm-scm.cc, op-sm-sm.cc, op-str-m.cc, op-str-s.cc, op-str-str.cc, op-struct.cc, op-ui16-ui16.cc, op-ui32-ui32.cc, op-ui64-ui64.cc, op-ui8-ui8.cc, ops.h, options-usage.h, lex.h, parse.h, pt-all.h, pt-arg-list.cc, pt-arg-list.h, pt-array-list.h, pt-assign.cc, pt-assign.h, pt-binop.cc, pt-binop.h, pt-bp.cc, pt-bp.h, pt-cbinop.cc, pt-cbinop.h, pt-cell.cc, pt-cell.h, pt-check.cc, pt-check.h, pt-classdef.cc, pt-classdef.h, pt-cmd.cc, pt-cmd.h, pt-colon.cc, pt-colon.h, pt-const.cc, pt-const.h, pt-decl.cc, pt-decl.h, pt-eval.cc, pt-eval.h, pt-except.cc, pt-except.h, pt-exp.cc, pt-exp.h, pt-fcn-handle.cc, pt-fcn-handle.h, pt-funcall.cc, pt-funcall.h, pt-id.cc, pt-id.h, pt-idx.cc, pt-idx.h, pt-jump.cc, pt-jump.h, pt-loop.cc, pt-loop.h, pt-mat.cc, pt-mat.h, pt-misc.cc, pt-misc.h, pt-pr-code.cc, pt-pr-code.h, pt-select.cc, pt-select.h, pt-stmt.cc, pt-stmt.h, pt-unop.cc, pt-unop.h, pt-walk.h, pt.cc, pt.h, token.cc, token.h, Array-jit.cc, Array-tc.cc, version.cc, version.in.h: Style check C++ code in libinterp/
author Rik <rik@octave.org>
date Tue, 30 Aug 2016 21:46:47 -0700
parents bac0d6f07a3e
children 3a2b891d0b33 e9a0469dedd9
line wrap: on
line source

/*

Copyright (C) 1996-2016 John W. Eaton
Copyright (C) 2016 Barbara Lócsi

This file is part of Octave.

Octave is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation; either version 3 of the License, or (at your
option) any later version.

Octave is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
for more details.

You should have received a copy of the GNU General Public License
along with Octave; see the file COPYING.  If not, see
<http://www.gnu.org/licenses/>.

*/

#if defined (HAVE_CONFIG_H)
#  include "config.h"
#endif

#include "defun.h"
#include "error.h"
#include "errwarn.h"
#include "ovl.h"

#include "EIG.h"
#include "fEIG.h"
#include "oct-string.h"

DEFUN (eig, args, nargout,
       doc: /* -*- texinfo -*-
@deftypefn  {} {@var{lambda} =} eig (@var{A})
@deftypefnx {} {@var{lambda} =} eig (@var{A}, @var{B})
@deftypefnx {} {[@var{V}, @var{lambda}] =} eig (@var{A})
@deftypefnx {} {[@var{V}, @var{lambda}] =} eig (@var{A}, @var{B})
@deftypefnx {} {[@var{V}, @var{lambda}, @var{W}] =} eig (@var{A})
@deftypefnx {} {[@var{V}, @var{lambda}, @var{W}] =} eig (@var{A}, @var{B})
@deftypefnx {} {[@dots{}] =} eig (@var{A}, @var{balanceOption})
@deftypefnx {} {[@dots{}] =} eig (@var{A}, @var{B}, @var{algorithm})
@deftypefnx {} {[@dots{}] =} eig (@dots{}, @var{eigvalOption})
Compute the right eigenvalues(V) and optionally the eigenvectors(lambda) and
the left eigenvalues(W) of a matrix or a pair of matrices.

The flag @var{balanceOption} can be one of:

@table @asis
@item @qcode{"balance"}
Preliminary balancing is on. (default)

@item @qcode{"nobalance"}
Disables preliminary balancing.
@end table

The flag @var{eigvalOption} can be one of:

@table @asis
@item @qcode{"matrix"}
Return the eigenvalues in a diagonal matrix. (default if 2 or 3 outputs
are specified)

@item @qcode{"vector"}
Return the eigenvalues in a column vector. (default if 1 output is
specified, e.g. @var{lambda} = eig (@var{A}))
@end table

The flag @var{algorithm} can be one of:

@table @asis
@item @qcode{"chol"}
Uses the Cholesky factorization of B. (default if A is symmetric (Hermitian)
and B is symmetric (Hermitian) positive definite)

@item @qcode{"qz"}
Uses the QZ algorithm. (When A or B are not symmetric always the
QZ algorithm will be used)
@end table

@multitable @columnfractions .31 .23 .23 .23
@headitem @tab no flag @tab chol @tab qz
@item both are symmetric
@tab @qcode{"chol"}
@tab @qcode{"chol"}
@tab @qcode{"qz"}
@item at least one is not symmetric
@tab @qcode{"qz"}
@tab @qcode{"qz"}
@tab @qcode{"qz"}
@end multitable

The eigenvalues returned by @code{eig} are not ordered.
@seealso{eigs, svd}
@end deftypefn */)
{
  int nargin = args.length ();

  if (nargin > 4 || nargin == 0)
    print_usage ();

  octave_value_list retval;

  octave_value arg_a, arg_b;

  arg_a = args(0);

  if (arg_a.is_empty ())
    return octave_value_list (2, Matrix ());

  if (! arg_a.is_float_type ())
    err_wrong_type_arg ("eig", arg_a);

  if (arg_a.rows () != arg_a.columns ())
    err_square_matrix_required ("eig", "A");

  // determine if it's AEP or GEP
  bool AEPcase = nargin == 1 || args(1).is_string ();

  if (! AEPcase)
    {
      arg_b = args(1);

      if (arg_b.is_empty ())
        return octave_value_list (2, Matrix ());

      if (! arg_b.is_float_type ())
        err_wrong_type_arg ("eig", arg_b);

      if (arg_b.rows () != arg_b.columns ())
        err_square_matrix_required ("eig", "B");
    }

  bool qz_flag = false;
  bool chol_flag = false;
  bool balance_flag = false;
  bool no_balance_flag = false;
  bool matrix_flag = false;
  bool vector_flag = false;

  for (int i = (AEPcase ? 1 : 2); i < args.length (); ++i)
    {
      if (! args(i).is_string ())
        err_wrong_type_arg ("eig", args(i));

      std::string arg_i = args(i).string_value ();
      if (octave::string::strcmpi (arg_i, "qz"))
        qz_flag = true;
      else if (octave::string::strcmpi (arg_i, "chol"))
        chol_flag = true;
      else if (octave::string::strcmpi (arg_i, "balance"))
        balance_flag = true;
      else if (octave::string::strcmpi (arg_i, "nobalance"))
        no_balance_flag = true;
      else if (octave::string::strcmpi (arg_i, "matrix"))
        matrix_flag = true;
      else if (octave::string::strcmpi (arg_i, "vector"))
        vector_flag = true;
      else
        error ("eig: invalid option \"%s\"", arg_i.c_str ());
    }

  if (balance_flag && no_balance_flag)
    error ("eig: \"balance\" and \"nobalance\" options are mutually exclusive");
  if (vector_flag && matrix_flag)
    error ("eig: \"vector\" and \"matrix\" options are mutually exclusive");
  if (qz_flag && chol_flag)
    error ("eig: \"qz\" and \"chol\" options are mutually exclusive");

  if (AEPcase)
    {
      if (qz_flag)
        error ("eig: invalid \"qz\" option for algebraic eigenvalue problem");
      if (chol_flag)
        error ("eig: invalid \"chol\" option for algebraic eigenvalue problem");
    }
  else
    {
      if (balance_flag)
        error ("eig: invalid \"balance\" option for generalized eigenvalue problem");
      if (no_balance_flag)
        error ("eig: invalid \"nobalance\" option for generalized eigenvalue problem");
    }

  // Default is to balance
  const bool balance = no_balance_flag ? false : true;
  const bool force_qz = qz_flag;


  Matrix tmp_a, tmp_b;
  ComplexMatrix ctmp_a, ctmp_b;
  FloatMatrix ftmp_a, ftmp_b;
  FloatComplexMatrix fctmp_a, fctmp_b;

  if (arg_a.is_single_type ())
    {
      FloatEIG result;
      if (AEPcase)
        {
          if (arg_a.is_real_type ())
            {
              ftmp_a = arg_a.float_matrix_value ();

              result = FloatEIG (ftmp_a, nargout > 1, nargout > 2, balance);
            }
          else
            {
              fctmp_a = arg_a.float_complex_matrix_value ();

              result = FloatEIG (fctmp_a, nargout > 1, nargout > 2, balance);
            }
        }
      else
        {
          if (arg_a.is_real_type () && arg_b.is_real_type ())
            {
              ftmp_a = arg_a.float_matrix_value ();
              ftmp_b = arg_b.float_matrix_value ();

              result = FloatEIG (ftmp_a, ftmp_b, nargout > 1, nargout > 2,
                                 force_qz);
            }
          else
            {
              fctmp_a = arg_a.float_complex_matrix_value ();
              fctmp_b = arg_b.float_complex_matrix_value ();

              result = FloatEIG (fctmp_a, fctmp_b, nargout > 1, nargout > 2,
                                 force_qz);
            }
        }

      if (nargout == 0 || nargout == 1)
        {
          if (matrix_flag)
            retval = ovl (FloatComplexDiagMatrix (result.eigenvalues ()));
          else
            retval = ovl (result.eigenvalues ());
        }
      else if (nargout == 2)
        {
          if (vector_flag)
            retval = ovl (result.right_eigenvectors (), result.eigenvalues ());
          else
            retval = ovl (result.right_eigenvectors (),
                          FloatComplexDiagMatrix (result.eigenvalues ()));
        }
      else
        {
          if (vector_flag)
            retval = ovl (result.right_eigenvectors (),
                          result.eigenvalues (),
                          result.left_eigenvectors ());
          else
            retval = ovl (result.right_eigenvectors (),
                          FloatComplexDiagMatrix (result.eigenvalues ()),
                          result.left_eigenvectors ());
        }
    }
  else
    {
      EIG result;

      if (AEPcase)
        {
          if (arg_a.is_real_type ())
            {
              tmp_a = arg_a.matrix_value ();

              result = EIG (tmp_a, nargout > 1, nargout > 2, balance);
            }
          else
            {
              ctmp_a = arg_a.complex_matrix_value ();

              result = EIG (ctmp_a, nargout > 1, nargout > 2, balance);
            }
        }
      else
        {
          if (arg_a.is_real_type () && arg_b.is_real_type ())
            {
              tmp_a = arg_a.matrix_value ();
              tmp_b = arg_b.matrix_value ();

              result = EIG (tmp_a, tmp_b, nargout > 1, nargout > 2, force_qz);
            }
          else
            {
              ctmp_a = arg_a.complex_matrix_value ();
              ctmp_b = arg_b.complex_matrix_value ();

              result = EIG (ctmp_a, ctmp_b, nargout > 1, nargout > 2, force_qz);
            }
        }

      if (nargout == 0 || nargout == 1)
        {
          if (matrix_flag)
            retval = ovl (ComplexDiagMatrix (result.eigenvalues ()));
          else
            retval = ovl (result.eigenvalues ());
        }
      else if (nargout == 2)
        {
          if (vector_flag)
            retval = ovl (result.right_eigenvectors (), result.eigenvalues ());
          else
            retval = ovl (result.right_eigenvectors (),
                          ComplexDiagMatrix (result.eigenvalues ()));
        }
      else
        {
          if (vector_flag)
            retval = ovl (result.right_eigenvectors (),
                          result.eigenvalues (),
                          result.left_eigenvectors ());
          else
            retval = ovl (result.right_eigenvectors (),
                          ComplexDiagMatrix (result.eigenvalues ()),
                          result.left_eigenvectors ());
        }
    }

  return retval;
}

/*
%!assert (eig ([1, 2; 2, 1]), [-1; 3], sqrt (eps))

%!test
%! [v, d] = eig ([1, 2; 2, 1]);
%! x = 1 / sqrt (2);
%! assert (d, [-1, 0; 0, 3], sqrt (eps))
%! assert (v, [-x, x; x, x], sqrt (eps))

%!test
%! [v, d, w] = eig ([1, 2; 2, 1]);
%! x = 1 / sqrt (2);
%! assert (w, [-x, x; x, x], sqrt (eps))

%!test
%! [v, d] = eig ([1, 2; 2, 1], "balance");
%! x = 1 / sqrt (2);
%! assert (d, [-1, 0; 0, 3], sqrt (eps))
%! assert (v, [-x, x; x, x], sqrt (eps))

%!test
%! [v, d, w] = eig ([1, 2; 2, 1], "balance");
%! x = 1 / sqrt (2);
%! assert (w, [-x, x; x, x], sqrt (eps));

%!assert (eig (single ([1, 2; 2, 1])), single ([-1; 3]), sqrt (eps ("single")))

%!assert (eig (single ([1, 2; 2, 1]), "balance"),
%!        single ([-1; 3]), sqrt (eps ("single")))

%!test
%! [v, d] = eig (single ([1, 2; 2, 1]));
%! x = single (1 / sqrt (2));
%! assert (d, single ([-1, 0; 0, 3]), sqrt (eps ("single")))
%! assert (v, [-x, x; x, x], sqrt (eps ("single")))

%!test
%! [v, d, w] = eig (single ([1, 2; 2, 1]));
%! x = single (1 / sqrt (2));
%! assert (w, [-x, x; x, x], sqrt (eps ("single")))

%!test
%! [v, d] = eig (single ([1, 2; 2, 1]), "balance");
%! x = single (1 / sqrt (2));
%! assert (d, single ([-1, 0; 0, 3]), sqrt (eps ("single")));
%! assert (v, [-x, x; x, x], sqrt (eps ("single")))

%!test
%! [v, d, w] = eig (single ([1, 2; 2, 1]), "balance");
%! x = single (1 / sqrt (2));
%! assert (w, [-x, x; x, x], sqrt (eps ("single")))


## If (at least one of) the matrices are non-symmetric,
## regardless the algorithm flag the qz algorithm should be used.
## So the results without algorithm flag, with "qz" and with "chol"
## should be the same.
%!function nonsym_chol_2_output (A, B, res = sqrt (eps))
%!  [v, d] = eig (A, B);
%!  [v2, d2] = eig (A, B, "qz");
%!  [v3, d3] = eig (A, B, "chol");
%!  assert (A * v(:, 1), d(1, 1) * B * v(:, 1), res)
%!  assert (A * v(:, 2), d(2, 2) * B * v(:, 2), res)
%!  assert (v, v2)
%!  assert (v, v3)
%!  assert (d, d2)
%!  assert (d, d3)
%!endfunction

%!test nonsym_chol_2_output ([1, 2; -1, 1], [3, 3; 1, 2])
%!test nonsym_chol_2_output ([1+3i, 2+3i; 3-8i, 8+3i], [8+i, 3+i; 4-9i, 3+i])
%!test nonsym_chol_2_output ([1, 2; 3, 8], [8, 3; 4, 3])

%!test nonsym_chol_2_output (single ([1, 2; -1, 1]),
%!                           single ([3, 3; 1, 2]), sqrt (eps ("single")))
%!test nonsym_chol_2_output (single ([1+3i, 2+3i; 3-8i, 8+3i]),
%!                           single ([8+i, 3+i; 4-9i, 3+i]),
%!                           sqrt (eps ("single")))

%!function nonsym_chol_3_output (A, B, res = sqrt (eps))
%!  [v, d, w] = eig (A, B);
%!  [v2, d2, w2] = eig (A, B, "qz");
%!  [v3, d3, w3] = eig (A, B, "chol");
%!  wt = w';
%!  assert (wt(1, :)* A, d(1, 1) * wt(1, :) * B, res)
%!  assert (wt(2, :)* A, d(2, 2) * wt(2, :) * B, res)
%!  assert (v, v2)
%!  assert (v, v3)
%!  assert (d, d2)
%!  assert (d, d3)
%!  assert (w, w2)
%!  assert (w, w3)
%!endfunction

%!test nonsym_chol_3_output ([1, 2; -1, 1], [3, 3; 1, 2])
%!test nonsym_chol_3_output ([1+3i, 2+3i; 3-8i, 8+3i], [8+i, 3+i; 4-9i, 3+i])
%!test nonsym_chol_3_output ([1, 2; 3, 8], [8, 3; 4, 3])

%!test nonsym_chol_3_output (single ([1, 2; -1, 1]),
%!                           single ([3, 3; 1, 2]), sqrt (eps ("single")))
%!test nonsym_chol_3_output (single ([1+3i, 2+3i; 3-8i, 8+3i]),
%!                           single ([8+i, 3+i; 4-9i, 3+i]),
%!                           sqrt (eps ("single")))

## If the matrices are symmetric,
## then the chol method is default.
## So the results without algorithm flag and with "chol" should be the same.
%!function sym_chol_2_input (A, B, res = sqrt (eps))
%!  [v, d] = eig (A, B);
%!  [v2, d2] = eig (A, B, "chol");
%!  assert (A * v(:, 1), d(1, 1) * B * v(:, 1), res)
%!  assert (A * v(:, 2), d(2, 2) * B * v(:, 2), res)
%!  assert (v, v2)
%!  assert (d, d2)
%!endfunction

%!test sym_chol_2_input ([1, 2; 2, 1], [3, -2; -2, 3])
%!test sym_chol_2_input ([1+3i, 2+i; 2-i, 1+3i], [5+9i, 2+i; 2-i, 5+9i])
%!test sym_chol_2_input ([1, 1+i; 1-i, 1], [2, 0; 0, 2])

%!test sym_chol_2_input (single ([1, 2; 2, 1]), single ([3, -2; -2, 3]),
%!                       sqrt (eps ("single")))
%!test sym_chol_2_input (single ([1+3i, 2+i; 2-i, 1+3i]),
%!                       single ([5+9i, 2+i; 2-i, 5+9i]), sqrt (eps ("single")))
%!test sym_chol_2_input (single ([1, 1+i; 1-i, 1]), single ([2, 0; 0, 2]),
%!                       sqrt (eps ("single")))

%!function sym_chol_3_input (A, B, res = sqrt (eps))
%!  [v, d, w] = eig (A, B);
%!  [v2, d2, w2] = eig (A, B, "chol");
%!  wt = w';
%!  assert (wt(1, :)* A, d(1, 1) * wt(1, :) * B, res)
%!  assert (wt(2, :)* A, d(2, 2) * wt(2, :) * B, res)
%!  assert (v, v2)
%!  assert (d, d2)
%!  assert (w, w2)
%!endfunction

%!test sym_chol_3_input ([1, 2; 2, 1], [3, -2; -2, 3])
%!test sym_chol_3_input ([1+3i, 2+i; 2-i, 1+3i], [5+9i, 2+i; 2-i, 5+9i])
%!test sym_chol_3_input ([1, 1+i; 1-i, 1], [2, 0; 0, 2])

%!test sym_chol_3_input (single ([1, 2; 2, 1]), single ([3, -2; -2, 3]),
%!                       sqrt (eps ("single")))
%!test sym_chol_3_input (single ([1+3i, 2+i; 2-i, 1+3i]),
%!                       single ([5+9i, 2+i; 2-i, 5+9i]), sqrt (eps ("single")))
%!test sym_chol_3_input (single ([1, 1+i; 1-i, 1]), single ([2, 0; 0, 2]),
%!                       sqrt (eps ("single")))

## "balance" is always default
## so the results with and without "balance" should be the same
## while in this case "nobalance" should produce different result
%!test
%! A = [3 -2 -0.9 0; -2 4 1 -0; -0 0 -1 0; -0.5 -0.5 0.1 1];
%! [V1, D1] = eig (A);
%! [V2, D2] = eig (A, "balance");
%! [V3, D3] = eig (A, "nobalance");
%! assert (V1, V2)
%! assert (D1, D2)
%! assert (isequal (V2, V3), false)

## Testing the flags in all combination.
## If 2 flags are on, than the result should be the same regardless
## of the flags order.
## option1 represents the first order while option2 represents the other order.
## d and d2 should be a diagonal matrix if "matrix" flag is on while
## these should be column vectors if the "vector" flag is on.
%!function test_eig_args (args, options1, options2, testd = @() true)
%!  [v, d, w] = eig (args{:}, options1{:});
%!  [v2, d2, w2] = eig (args{:}, options2{:});
%!  assert (testd (d))
%!  assert (testd (d2))
%!  assert (v, v2)
%!  assert (d, d2)
%!  assert (w, w2)
%!endfunction

%!function qz_chol_with_shapes (A, B)
%!  for shapes = struct ("name", {"vector", "matrix"},
%!                       "test", {@isvector, @isdiag})
%!    test_eig_args ({A, B}, {"qz", shapes.name},
%!                   {shapes.name, "qz"}, shapes.test);
%!    test_eig_args ({A, B}, {"chol", shapes.name},
%!                   {shapes.name, "chol"}, shapes.test);
%!  endfor
%!endfunction

%!function balance_nobalance_with_shapes (A)
%!  for shapes = struct ("name", {"vector", "matrix"},
%!                       "test", {@isvector, @isdiag})
%!    test_eig_args ({A}, {"balance", shapes.name},
%!                   {shapes.name, "balance"}, shapes.test);
%!    test_eig_args ({A}, {"nobalance", shapes.name},
%!                   {shapes.name, "nobalance"}, shapes.test);
%!  endfor
%!endfunction

## Default return format:
## diagonal matrix if 2 or 3 outputs are specified
## column vector if 1 output is specified
%!function test_shapes (args)
%!  d = eig (args{:});
%!  assert (isvector(d))
%!  d2 = eig (args{:}, "vector");
%!  assert (isvector(d2))
%!  [v, d3] = eig (args{:});
%!  assert (isdiag(d3))
%!  d4 = eig (args{:}, "matrix");
%!  assert (isdiag(d4))
%!  [v, d5, w] = eig (args{:});
%!  assert (isdiag(d5))
%!  d6 = eig (args{:}, "matrix");
%!  assert (isdiag(d6))
%!  assert (d, d2)
%!  assert (d3, d4)
%!  assert (d5, d6)
%!  assert (d, diag(d3))
%!  assert (d, diag(d5))
%!endfunction

%!function shapes_AEP (A)
%!  test_shapes({A});
%!endfunction

%!function shapes_GEP (A, B)
%!  test_shapes({A, B});
%!endfunction

%!test balance_nobalance_with_shapes ([1, 2; 2, 1]);
%!test balance_nobalance_with_shapes (single ([1, 2; 2, 1]));

%!test shapes_AEP ([1, 2; 2, 1]);
%!test shapes_AEP (single ([1, 2; 2, 1]));

%!test qz_chol_with_shapes ([1, 1+i; 1-i, 1], [2, 0; 0, 2]);
%!test qz_chol_with_shapes ([1, 2; 3, 8], [8, 3; 4, 3]);
%!test qz_chol_with_shapes ([1, 2; -1, 1], [3, 3; 1, 2]);

%!test qz_chol_with_shapes (single ([1, 1+i; 1-i, 1]),  single ([2, 0; 0, 2]));
%!test qz_chol_with_shapes (single ([1, 2; 3, 8]),  single ([8, 3; 4, 3]));
%!test qz_chol_with_shapes (single ([1, 2; -1, 1]),  single ([3, 3; 1, 2]));

%!test shapes_GEP ([1, 1+i; 1-i, 1], [2, 0; 0, 2]);
%!test shapes_GEP ([1, 2; 3, 8], [8, 3; 4, 3]);
%!test shapes_GEP ([1, 2; -1, 1], [3, 3; 1, 2]);

%!test shapes_GEP (single ([1, 1+i; 1-i, 1]),  single ([2, 0; 0, 2]));
%!test shapes_GEP (single ([1, 2; 3, 8]),  single ([8, 3; 4, 3]));
%!test shapes_GEP (single ([1, 2; -1, 1]),  single ([3, 3; 1, 2]));

%!function chol_qz_accuracy (A, B, is_qz_accurate, is_chol_accurate)
%!  [V1,D1] = eig (A,B, 'qz');
%!  [V2,D2] = eig (A,B); #default is chol
%!  assert (isequal (A*V1,A*V1*D1), is_qz_accurate)
%!  assert (isequal (A*V2, A*V2*D2), is_chol_accurate)
%!endfunction

%!test
%! minij_100 = gallery('minij',100);
%! chol_qz_accuracy (minij_100, minij_100, false, true);

%!test
%! moler_100 = gallery('moler',100);
%! chol_qz_accuracy (moler_100, moler_100, false, true);

%!test
%! A = diag([10^-16, 10^-15]);
%! chol_qz_accuracy (A, A, true, false);

%!error eig ()
%!error eig (false)
%!error eig ([1, 2; 3, 4], [4, 3; 2, 1], 1)

%!error <EIG requires same size matrices>
%!  eig ([1, 2; 3, 4], 2)
%!error <must be a square matrix>
%! eig ([1, 2; 3, 4; 5, 6])
%!error <wrong type argument>
%!  eig ("abcd")
%!error <invalid option "abcd">
%!  eig ([1 2 ; 2 3], "abcd")
%!error <invalid "chol" option for algebraic eigenvalue problem>
%!  eig ([1 2 ; 2 3], "chol")
%!error <invalid "qz" option for algebraic eigenvalue problem>
%!  eig ([1 2 ; 2 3], "qz")
%!error <wrong type argument>
%!  eig (false, [1 2 ; 2 3])
%!error <invalid option "abcd">
%!  eig ([1 2 ; 2 3], [1 2 ; 2 3], "abcd")
%!error <invalid "qz" option for algebraic eigenvalue problem>
%!  eig ([1 2 ; 2 3], "balance", "qz")
%!error <invalid option "abcd">
%!  eig ([1 2 ; 2 3], [1 2 ; 2 3], "vector", "abcd")
%!error <invalid option "abcd">
%!  eig ([1 2 ; 2 3], "balance", "matrix", "abcd")
%!error <"balance" and "nobalance" options are mutually exclusive>
%!  eig ([1 2 ; 2 3], "balance", "nobalance")
%!error <"balance" and "nobalance" options are mutually exclusive>
%!  eig ([1 2 ; 2 3], "nobalance", "balance")
%!error <"vector" and "matrix" options are mutually exclusive>
%!  eig ([1 2 ; 2 3], "matrix", "vector")
%!error <"vector" and "matrix" options are mutually exclusive>
%!  eig ([1 2 ; 2 3], "vector", "matrix")
%!error <"vector" and "matrix" options are mutually exclusive>
%!  eig ([1 2 ; 2 3], [1 2 ; 2 3], "matrix", "vector")
%!error <"vector" and "matrix" options are mutually exclusive>
%!  eig ([1 2 ; 2 3], [1 2 ; 2 3], "vector", "matrix")
%!error <wrong type argument>
%!  eig ([1 2 ; 2 3], [1 2 ; 2 3], false)
%!error <wrong type argument>
%!  eig ([1 2 ; 2 3], [1 2 ; 2 3], [1 2 ; 2 3])
*/