view liboctave/array/MatrixType.cc @ 21301:40de9f8f23a6

Use '#include "config.h"' rather than <config.h>. * mk-octave-config-h.sh, mk-opts.pl, Backend.cc, BaseControl.cc, ButtonControl.cc, Canvas.cc, CheckBoxControl.cc, Container.cc, ContextMenu.cc, EditControl.cc, Figure.cc, FigureWindow.cc, GLCanvas.cc, KeyMap.cc, ListBoxControl.cc, Logger.cc, Menu.cc, MouseModeActionGroup.cc, Object.cc, ObjectFactory.cc, ObjectProxy.cc, Panel.cc, PopupMenuControl.cc, PushButtonControl.cc, PushTool.cc, QtHandlesUtils.cc, RadioButtonControl.cc, SliderControl.cc, TextControl.cc, TextEdit.cc, ToggleButtonControl.cc, ToggleTool.cc, ToolBar.cc, ToolBarButton.cc, __init_qt__.cc, annotation-dialog.cc, gl-select.cc, module.mk, kpty.cpp, color-picker.cc, dialog.cc, documentation-dock-widget.cc, files-dock-widget.cc, find-files-dialog.cc, find-files-model.cc, history-dock-widget.cc, file-editor-tab.cc, file-editor-tab.h, file-editor.cc, find-dialog.cc, marker.cc, octave-qscintilla.cc, octave-txt-lexer.cc, main-window.cc, octave-cmd.cc, octave-dock-widget.cc, octave-gui.cc, octave-interpreter.cc, octave-qt-link.cc, parser.cc, webinfo.cc, resource-manager.cc, settings-dialog.cc, shortcut-manager.cc, terminal-dock-widget.cc, thread-manager.cc, welcome-wizard.cc, workspace-model.cc, workspace-view.cc, build-env-features.sh, build-env.in.cc, Cell.cc, __contourc__.cc, __dispatch__.cc, __dsearchn__.cc, __ichol__.cc, __ilu__.cc, __lin_interpn__.cc, __pchip_deriv__.cc, __qp__.cc, balance.cc, besselj.cc, betainc.cc, bitfcns.cc, bsxfun.cc, c-file-ptr-stream.cc, cdisplay.c, cellfun.cc, coct-hdf5-types.c, colloc.cc, comment-list.cc, conv2.cc, daspk.cc, dasrt.cc, dassl.cc, data.cc, debug.cc, defaults.cc, defun.cc, det.cc, dirfns.cc, display.cc, dlmread.cc, dot.cc, dynamic-ld.cc, eig.cc, ellipj.cc, error.cc, errwarn.cc, event-queue.cc, fft.cc, fft2.cc, fftn.cc, file-io.cc, filter.cc, find.cc, ft-text-renderer.cc, gammainc.cc, gcd.cc, getgrent.cc, getpwent.cc, getrusage.cc, givens.cc, gl-render.cc, gl2ps-print.cc, graphics.cc, gripes.cc, hash.cc, help.cc, hess.cc, hex2num.cc, hook-fcn.cc, input.cc, inv.cc, jit-ir.cc, jit-typeinfo.cc, jit-util.cc, kron.cc, load-path.cc, load-save.cc, lookup.cc, ls-ascii-helper.cc, ls-hdf5.cc, ls-mat-ascii.cc, ls-mat4.cc, ls-mat5.cc, ls-oct-binary.cc, ls-oct-text.cc, ls-utils.cc, lsode.cc, lu.cc, luinc.cc, mappers.cc, matrix_type.cc, max.cc, mex.cc, mgorth.cc, nproc.cc, oct-errno.in.cc, oct-fstrm.cc, oct-hdf5-types.cc, oct-hist.cc, oct-iostrm.cc, oct-lvalue.cc, oct-map.cc, oct-prcstrm.cc, oct-procbuf.cc, oct-stream.cc, oct-strstrm.cc, oct-tex-lexer.in.ll, oct-tex-parser.in.yy, octave-link.cc, ordschur.cc, pager.cc, pinv.cc, pr-output.cc, procstream.cc, profiler.cc, psi.cc, pt-jit.cc, quad.cc, quadcc.cc, qz.cc, rand.cc, rcond.cc, regexp.cc, schur.cc, sighandlers.cc, siglist.c, sparse-xdiv.cc, sparse-xpow.cc, sparse.cc, spparms.cc, sqrtm.cc, str2double.cc, strfind.cc, strfns.cc, sub2ind.cc, svd.cc, sylvester.cc, symtab.cc, syscalls.cc, sysdep.cc, text-renderer.cc, time.cc, toplev.cc, tril.cc, tsearch.cc, txt-eng.cc, typecast.cc, urlwrite.cc, utils.cc, variables.cc, xdiv.cc, xgl2ps.c, xnorm.cc, xpow.cc, zfstream.cc, __delaunayn__.cc, __eigs__.cc, __fltk_uigetfile__.cc, __glpk__.cc, __init_fltk__.cc, __init_gnuplot__.cc, __magick_read__.cc, __osmesa_print__.cc, __voronoi__.cc, amd.cc, audiodevinfo.cc, audioread.cc, ccolamd.cc, chol.cc, colamd.cc, convhulln.cc, dmperm.cc, fftw.cc, qr.cc, symbfact.cc, symrcm.cc, mkbuiltins, mkops, ov-base-diag.cc, ov-base-int.cc, ov-base-mat.cc, ov-base-scalar.cc, ov-base-sparse.cc, ov-base.cc, ov-bool-mat.cc, ov-bool-sparse.cc, ov-bool.cc, ov-builtin.cc, ov-cell.cc, ov-ch-mat.cc, ov-class.cc, ov-classdef.cc, ov-colon.cc, ov-complex.cc, ov-cs-list.cc, ov-cx-diag.cc, ov-cx-mat.cc, ov-cx-sparse.cc, ov-dld-fcn.cc, ov-fcn-handle.cc, ov-fcn-inline.cc, ov-fcn.cc, ov-float.cc, ov-flt-complex.cc, ov-flt-cx-diag.cc, ov-flt-cx-mat.cc, ov-flt-re-diag.cc, ov-flt-re-mat.cc, ov-int16.cc, ov-int32.cc, ov-int64.cc, ov-int8.cc, ov-java.cc, ov-lazy-idx.cc, ov-mex-fcn.cc, ov-null-mat.cc, ov-oncleanup.cc, ov-perm.cc, ov-range.cc, ov-re-diag.cc, ov-re-mat.cc, ov-re-sparse.cc, ov-scalar.cc, ov-str-mat.cc, ov-struct.cc, ov-typeinfo.cc, ov-uint16.cc, ov-uint32.cc, ov-uint64.cc, ov-uint8.cc, ov-usr-fcn.cc, ov.cc, ovl.cc, octave.cc, op-b-b.cc, op-b-bm.cc, op-b-sbm.cc, op-bm-b.cc, op-bm-bm.cc, op-bm-sbm.cc, op-cdm-cdm.cc, op-cell.cc, op-chm.cc, op-class.cc, op-cm-cm.cc, op-cm-cs.cc, op-cm-m.cc, op-cm-s.cc, op-cm-scm.cc, op-cm-sm.cc, op-cs-cm.cc, op-cs-cs.cc, op-cs-m.cc, op-cs-s.cc, op-cs-scm.cc, op-cs-sm.cc, op-dm-dm.cc, op-dm-scm.cc, op-dm-sm.cc, op-dm-template.cc, op-dms-template.cc, op-double-conv.cc, op-fcdm-fcdm.cc, op-fcdm-fdm.cc, op-fcm-fcm.cc, op-fcm-fcs.cc, op-fcm-fm.cc, op-fcm-fs.cc, op-fcn.cc, op-fcs-fcm.cc, op-fcs-fcs.cc, op-fcs-fm.cc, op-fcs-fs.cc, op-fdm-fdm.cc, op-float-conv.cc, op-fm-fcm.cc, op-fm-fcs.cc, op-fm-fm.cc, op-fm-fs.cc, op-fs-fcm.cc, op-fs-fcs.cc, op-fs-fm.cc, op-fs-fs.cc, op-i16-i16.cc, op-i32-i32.cc, op-i64-i64.cc, op-i8-i8.cc, op-int-concat.cc, op-int-conv.cc, op-m-cm.cc, op-m-cs.cc, op-m-m.cc, op-m-s.cc, op-m-scm.cc, op-m-sm.cc, op-pm-pm.cc, op-pm-scm.cc, op-pm-sm.cc, op-pm-template.cc, op-range.cc, op-s-cm.cc, op-s-cs.cc, op-s-m.cc, op-s-s.cc, op-s-scm.cc, op-s-sm.cc, op-sbm-b.cc, op-sbm-bm.cc, op-sbm-sbm.cc, op-scm-cm.cc, op-scm-cs.cc, op-scm-m.cc, op-scm-s.cc, op-scm-scm.cc, op-scm-sm.cc, op-sm-cm.cc, op-sm-cs.cc, op-sm-m.cc, op-sm-s.cc, op-sm-scm.cc, op-sm-sm.cc, op-str-m.cc, op-str-s.cc, op-str-str.cc, op-struct.cc, op-ui16-ui16.cc, op-ui32-ui32.cc, op-ui64-ui64.cc, op-ui8-ui8.cc, lex.ll, oct-parse.in.yy, pt-arg-list.cc, pt-array-list.cc, pt-assign.cc, pt-binop.cc, pt-bp.cc, pt-cbinop.cc, pt-cell.cc, pt-check.cc, pt-classdef.cc, pt-cmd.cc, pt-colon.cc, pt-const.cc, pt-decl.cc, pt-eval.cc, pt-except.cc, pt-exp.cc, pt-fcn-handle.cc, pt-funcall.cc, pt-id.cc, pt-idx.cc, pt-jump.cc, pt-loop.cc, pt-mat.cc, pt-misc.cc, pt-pr-code.cc, pt-select.cc, pt-stmt.cc, pt-unop.cc, pt.cc, token.cc, Array-jit.cc, Array-os.cc, Array-sym.cc, Array-tc.cc, version.cc, Array-C.cc, Array-b.cc, Array-ch.cc, Array-d.cc, Array-f.cc, Array-fC.cc, Array-i.cc, Array-idx-vec.cc, Array-s.cc, Array-str.cc, Array-util.cc, Array-voidp.cc, Array.cc, CColVector.cc, CDiagMatrix.cc, CMatrix.cc, CNDArray.cc, CRowVector.cc, CSparse.cc, DiagArray2.cc, MArray-C.cc, MArray-d.cc, MArray-f.cc, MArray-fC.cc, MArray-i.cc, MArray-s.cc, MArray.cc, MDiagArray2.cc, MSparse-C.cc, MSparse-d.cc, MatrixType.cc, PermMatrix.cc, Range.cc, Sparse-C.cc, Sparse-b.cc, Sparse-d.cc, Sparse.cc, boolMatrix.cc, boolNDArray.cc, boolSparse.cc, chMatrix.cc, chNDArray.cc, dColVector.cc, dDiagMatrix.cc, dMatrix.cc, dNDArray.cc, dRowVector.cc, dSparse.cc, dim-vector.cc, fCColVector.cc, fCDiagMatrix.cc, fCMatrix.cc, fCNDArray.cc, fCRowVector.cc, fColVector.cc, fDiagMatrix.cc, fMatrix.cc, fNDArray.cc, fRowVector.cc, idx-vector.cc, int16NDArray.cc, int32NDArray.cc, int64NDArray.cc, int8NDArray.cc, intNDArray.cc, uint16NDArray.cc, uint32NDArray.cc, uint64NDArray.cc, uint8NDArray.cc, blaswrap.c, cquit.c, f77-extern.cc, f77-fcn.c, lo-error.c, quit.cc, CollocWt.cc, DASPK.cc, DASRT.cc, DASSL.cc, EIG.cc, LSODE.cc, ODES.cc, Quad.cc, aepbalance.cc, chol.cc, eigs-base.cc, fEIG.cc, gepbalance.cc, hess.cc, lo-mappers.cc, lo-specfun.cc, lu.cc, oct-convn.cc, oct-fftw.cc, oct-norm.cc, oct-rand.cc, oct-spparms.cc, qr.cc, qrp.cc, randgamma.c, randmtzig.c, randpoisson.c, schur.cc, sparse-chol.cc, sparse-dmsolve.cc, sparse-lu.cc, sparse-qr.cc, svd.cc, mk-ops.awk, dir-ops.cc, file-ops.cc, file-stat.cc, lo-sysdep.cc, mach-info.cc, oct-env.cc, oct-group.cc, oct-passwd.cc, oct-syscalls.cc, oct-time.cc, oct-uname.cc, cmd-edit.cc, cmd-hist.cc, data-conv.cc, f2c-main.c, glob-match.cc, kpse.cc, lo-array-errwarn.cc, lo-array-gripes.cc, lo-cutils.c, lo-ieee.cc, lo-regexp.cc, lo-utils.cc, oct-base64.cc, oct-glob.cc, oct-inttypes.cc, oct-locbuf.cc, oct-mutex.cc, oct-rl-edit.c, oct-rl-hist.c, oct-shlib.cc, oct-sort.cc, pathsearch.cc, singleton-cleanup.cc, sparse-sort.cc, sparse-util.cc, str-vec.cc, unwind-prot.cc, url-transfer.cc, display-available.c, main-cli.cc, main-gui.cc, main.in.cc, mkoctfile.in.cc, octave-config.in.cc: Use '#include "config.h"' rather than <config.h>.
author Rik <rik@octave.org>
date Thu, 18 Feb 2016 13:34:50 -0800
parents f7121e111991
children aba2e6293dd8
line wrap: on
line source

/*

Copyright (C) 2006-2015 David Bateman
Copyright (C) 2006 Andy Adler
Copyright (C) 2009 VZLU Prague

This file is part of Octave.

Octave is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation; either version 3 of the License, or (at your
option) any later version.

Octave is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
for more details.

You should have received a copy of the GNU General Public License
along with Octave; see the file COPYING.  If not, see
<http://www.gnu.org/licenses/>.

*/

#ifdef HAVE_CONFIG_H
#  include "config.h"
#endif

#include <vector>

#include "MatrixType.h"
#include "dMatrix.h"
#include "fMatrix.h"
#include "CMatrix.h"
#include "fCMatrix.h"
#include "dSparse.h"
#include "CSparse.h"
#include "oct-spparms.h"
#include "oct-locbuf.h"

static void
warn_cached (void)
{
  (*current_liboctave_warning_with_id_handler)
    ("Octave:matrix-type-info", "using cached matrix type");
}

static void
warn_invalid (void)
{
  (*current_liboctave_warning_with_id_handler)
    ("Octave:matrix-type-info", "invalid matrix type");
}

static void
warn_calculating_sparse_type (void)
{
  (*current_liboctave_warning_with_id_handler)
    ("Octave:matrix-type-info", "calculating sparse matrix type");
}

// FIXME: There is a large code duplication here

MatrixType::MatrixType (void)
  : typ (MatrixType::Unknown),
    sp_bandden (octave_sparse_params::get_bandden ()),
    bandden (0), upper_band (0),
    lower_band (0), dense (false), full (false), nperm (0), perm (0) { }

MatrixType::MatrixType (const MatrixType &a)
  : typ (a.typ), sp_bandden (a.sp_bandden), bandden (a.bandden),
    upper_band (a.upper_band), lower_band (a.lower_band),
    dense (a.dense), full (a.full), nperm (a.nperm), perm (0)
{
  if (nperm != 0)
    {
      perm = new octave_idx_type [nperm];
      for (octave_idx_type i = 0; i < nperm; i++)
        perm[i] = a.perm[i];
    }
}

template <typename T>
MatrixType::matrix_type
matrix_real_probe (const MArray<T>& a)
{
  MatrixType::matrix_type typ;
  octave_idx_type nrows = a.rows ();
  octave_idx_type ncols = a.cols ();

  const T zero = 0;

  if (ncols == nrows)
    {
      bool upper = true;
      bool lower = true;
      bool hermitian = true;

      // do the checks for lower/upper/hermitian all in one pass.
      OCTAVE_LOCAL_BUFFER (T, diag, ncols);

      for (octave_idx_type j = 0;
           j < ncols && upper; j++)
        {
          T d = a.elem (j,j);
          upper = upper && (d != zero);
          lower = lower && (d != zero);
          hermitian = hermitian && (d > zero);
          diag[j] = d;
        }

      for (octave_idx_type j = 0;
           j < ncols && (upper || lower || hermitian); j++)
        {
          for (octave_idx_type i = 0; i < j; i++)
            {
              double aij = a.elem (i,j);
              double aji = a.elem (j,i);
              lower = lower && (aij == zero);
              upper = upper && (aji == zero);
              hermitian = hermitian && (aij == aji
                                        && aij*aij < diag[i]*diag[j]);
            }
        }

      if (upper)
        typ = MatrixType::Upper;
      else if (lower)
        typ = MatrixType::Lower;
      else if (hermitian)
        typ = MatrixType::Hermitian;
      else
        typ = MatrixType::Full;
    }
  else
    typ = MatrixType::Rectangular;

  return typ;
}

template <typename T>
MatrixType::matrix_type
matrix_complex_probe (const MArray<std::complex<T> >& a)
{
  MatrixType::matrix_type typ = MatrixType::Unknown;
  octave_idx_type nrows = a.rows ();
  octave_idx_type ncols = a.cols ();

  const T zero = 0;
  // get the real type

  if (ncols == nrows)
    {
      bool upper = true;
      bool lower = true;
      bool hermitian = true;

      // do the checks for lower/upper/hermitian all in one pass.
      OCTAVE_LOCAL_BUFFER (T, diag, ncols);

      for (octave_idx_type j = 0;
           j < ncols && upper; j++)
        {
          std::complex<T> d = a.elem (j,j);
          upper = upper && (d != zero);
          lower = lower && (d != zero);
          hermitian = hermitian && (d.real () > zero && d.imag () == zero);
          diag[j] = d.real ();
        }

      for (octave_idx_type j = 0;
           j < ncols && (upper || lower || hermitian); j++)
        {
          for (octave_idx_type i = 0; i < j; i++)
            {
              std::complex<T> aij = a.elem (i,j);
              std::complex<T> aji = a.elem (j,i);
              lower = lower && (aij == zero);
              upper = upper && (aji == zero);
              hermitian = hermitian && (aij == std::conj (aji)
                                        && std::norm (aij) < diag[i]*diag[j]);
            }
        }


      if (upper)
        typ = MatrixType::Upper;
      else if (lower)
        typ = MatrixType::Lower;
      else if (hermitian)
        typ = MatrixType::Hermitian;
      else if (ncols == nrows)
        typ = MatrixType::Full;
    }
  else
    typ = MatrixType::Rectangular;

  return typ;
}

MatrixType::MatrixType (const Matrix &a)
  : typ (MatrixType::Unknown),
    sp_bandden (0), bandden (0), upper_band (0), lower_band (0),
    dense (false), full (true), nperm (0), perm (0)
{
  typ = matrix_real_probe (a);
}

MatrixType::MatrixType (const ComplexMatrix &a)
  : typ (MatrixType::Unknown),
    sp_bandden (0), bandden (0), upper_band (0), lower_band (0),
    dense (false), full (true), nperm (0), perm (0)
{
  typ = matrix_complex_probe (a);
}


MatrixType::MatrixType (const FloatMatrix &a)
  : typ (MatrixType::Unknown),
    sp_bandden (0), bandden (0), upper_band (0), lower_band (0),
    dense (false), full (true), nperm (0), perm (0)
{
  typ = matrix_real_probe (a);
}

MatrixType::MatrixType (const FloatComplexMatrix &a)
  : typ (MatrixType::Unknown),
    sp_bandden (0), bandden (0), upper_band (0), lower_band (0),
    dense (false), full (true), nperm (0), perm (0)
{
  typ = matrix_complex_probe (a);
}

MatrixType::MatrixType (const SparseMatrix &a)
  : typ (MatrixType::Unknown),
    sp_bandden (0), bandden (0), upper_band (0), lower_band (0),
    dense (false), full (false), nperm (0), perm (0)
{
  octave_idx_type nrows = a.rows ();
  octave_idx_type ncols = a.cols ();
  octave_idx_type nm = (ncols < nrows ? ncols : nrows);
  octave_idx_type nnz = a.nnz ();

  if (octave_sparse_params::get_key ("spumoni") != 0.)
    warn_calculating_sparse_type ();

  sp_bandden = octave_sparse_params::get_bandden ();
  bool maybe_hermitian = false;
  typ = MatrixType::Full;

  if (nnz == nm)
    {
      matrix_type tmp_typ = MatrixType::Diagonal;
      octave_idx_type i;
      // Maybe the matrix is diagonal
      for (i = 0; i < nm; i++)
        {
          if (a.cidx (i+1) != a.cidx (i) + 1)
            {
              tmp_typ = MatrixType::Full;
              break;
            }
          if (a.ridx (i) != i)
            {
              tmp_typ = MatrixType::Permuted_Diagonal;
              break;
            }
        }

      if (tmp_typ == MatrixType::Permuted_Diagonal)
        {
          std::vector<bool> found (nrows);

          for (octave_idx_type j = 0; j < i; j++)
            found[j] = true;
          for (octave_idx_type j = i; j < nrows; j++)
            found[j] = false;

          for (octave_idx_type j = i; j < nm; j++)
            {
              if ((a.cidx (j+1) > a.cidx (j) + 1)
                  || ((a.cidx (j+1) == a.cidx (j) + 1) && found[a.ridx (j)]))
                {
                  tmp_typ = MatrixType::Full;
                  break;
                }
              found[a.ridx (j)] = true;
            }
        }
      typ = tmp_typ;
    }

  if (typ == MatrixType::Full)
    {
      // Search for banded, upper and lower triangular matrices
      bool singular = false;
      upper_band = 0;
      lower_band = 0;
      for (octave_idx_type j = 0; j < ncols; j++)
        {
          bool zero_on_diagonal = false;
          if (j < nrows)
            {
              zero_on_diagonal = true;
              for (octave_idx_type i = a.cidx (j); i < a.cidx (j+1); i++)
                if (a.ridx (i) == j)
                  {
                    zero_on_diagonal = false;
                    break;
                  }
            }

          if (zero_on_diagonal)
            {
              singular = true;
              break;
            }

          if (a.cidx (j+1) != a.cidx (j))
            {
              octave_idx_type ru = a.ridx (a.cidx (j));
              octave_idx_type rl = a.ridx (a.cidx (j+1)-1);

              if (j - ru > upper_band)
                upper_band = j - ru;

              if (rl - j > lower_band)
                lower_band = rl - j;
            }
        }

      if (! singular)
        {
          bandden = double (nnz) /
                    (double (ncols) * (double (lower_band) +
                                       double (upper_band)) -
                     0.5 * double (upper_band + 1) * double (upper_band) -
                     0.5 * double (lower_band + 1) * double (lower_band));

          if (nrows == ncols && sp_bandden != 1. && bandden > sp_bandden)
            {
              if (upper_band == 1 && lower_band == 1)
                typ = MatrixType::Tridiagonal;
              else
                typ = MatrixType::Banded;

              octave_idx_type nnz_in_band =
                (upper_band + lower_band + 1) * nrows -
                (1 + upper_band) * upper_band / 2 -
                (1 + lower_band) * lower_band / 2;
              if (nnz_in_band == nnz)
                dense = true;
              else
                dense = false;
            }
          else if (upper_band == 0)
            typ = MatrixType::Lower;
          else if (lower_band == 0)
            typ = MatrixType::Upper;

          if (upper_band == lower_band && nrows == ncols)
            maybe_hermitian = true;
        }

      if (typ == MatrixType::Full)
        {
          // Search for a permuted triangular matrix, and test if
          // permutation is singular

          // FIXME: Perhaps this should be based on a dmperm algorithm?
          bool found = false;

          nperm = ncols;
          perm = new octave_idx_type [ncols];

          for (octave_idx_type i = 0; i < ncols; i++)
            perm[i] = -1;

          for (octave_idx_type i = 0; i < nm; i++)
            {
              found = false;

              for (octave_idx_type j = 0; j < ncols; j++)
                {
                  if ((a.cidx (j+1) - a.cidx (j)) > 0
                      && (a.ridx (a.cidx (j+1)-1) == i))
                    {
                      perm[i] = j;
                      found = true;
                      break;
                    }
                }

              if (! found)
                break;
            }

          if (found)
            {
              typ = MatrixType::Permuted_Upper;
              if (ncols > nrows)
                {
                  octave_idx_type k = nrows;
                  for (octave_idx_type i = 0; i < ncols; i++)
                    if (perm[i] == -1)
                      perm[i] = k++;
                }
            }
          else if (a.cidx (nm) == a.cidx (ncols))
            {
              nperm = nrows;
              delete [] perm;
              perm = new octave_idx_type [nrows];
              OCTAVE_LOCAL_BUFFER (octave_idx_type, tmp, nrows);

              for (octave_idx_type i = 0; i < nrows; i++)
                {
                  perm[i] = -1;
                  tmp[i] = -1;
                }

              for (octave_idx_type j = 0; j < ncols; j++)
                for (octave_idx_type i = a.cidx (j); i < a.cidx (j+1); i++)
                  perm[a.ridx (i)] = j;

              found = true;
              for (octave_idx_type i = 0; i < nm; i++)
                if (perm[i] == -1)
                  {
                    found = false;
                    break;
                  }
                else
                  {
                    tmp[perm[i]] = 1;
                  }

              if (found)
                {
                  octave_idx_type k = ncols;
                  for (octave_idx_type i = 0; i < nrows; i++)
                    {
                      if (tmp[i] == -1)
                        {
                          if (k < nrows)
                            {
                              perm[k++] = i;
                            }
                          else
                            {
                              found = false;
                              break;
                            }
                        }
                    }
                }

              if (found)
                typ = MatrixType::Permuted_Lower;
              else
                {
                  delete [] perm;
                  nperm = 0;
                }
            }
          else
            {
              delete [] perm;
              nperm = 0;
            }
        }

      // FIXME: Disable lower under-determined and upper over-determined
      //        problems as being detected, and force to treat as singular
      //        as this seems to cause issues.
      if (((typ == MatrixType::Lower || typ == MatrixType::Permuted_Lower)
           && nrows > ncols)
          || ((typ == MatrixType::Upper || typ == MatrixType::Permuted_Upper)
              && nrows < ncols))
        {
          if (typ == MatrixType::Permuted_Upper
              || typ == MatrixType::Permuted_Lower)
            delete [] perm;
          nperm = 0;
          typ = MatrixType::Rectangular;
        }

      if (typ == MatrixType::Full && ncols != nrows)
        typ = MatrixType::Rectangular;

      if (maybe_hermitian && (typ == MatrixType::Full
                              || typ == MatrixType::Tridiagonal
                              || typ == MatrixType::Banded))
        {
          bool is_herm = true;

          // first, check whether the diagonal is positive & extract it
          ColumnVector diag (ncols);

          for (octave_idx_type j = 0; is_herm && j < ncols; j++)
            {
              is_herm = false;
              for (octave_idx_type i = a.cidx (j); i < a.cidx (j+1); i++)
                {
                  if (a.ridx (i) == j)
                    {
                      double d = a.data (i);
                      is_herm = d > 0.;
                      diag(j) = d;
                      break;
                    }
                }
            }


          // next, check symmetry and 2x2 positiveness

          for (octave_idx_type j = 0; is_herm && j < ncols; j++)
            for (octave_idx_type i = a.cidx (j); is_herm && i < a.cidx (j+1); i++)
              {
                octave_idx_type k = a.ridx (i);
                is_herm = k == j;
                if (is_herm)
                  continue;
                double d = a.data (i);
                if (d*d < diag(j)*diag(k))
                  {
                    for (octave_idx_type l = a.cidx (k); l < a.cidx (k+1); l++)
                      {
                        if (a.ridx (l) == j)
                          {
                            is_herm = a.data (l) == d;
                            break;
                          }
                      }
                  }
              }

          if (is_herm)
            {
              if (typ == MatrixType::Full)
                typ = MatrixType::Hermitian;
              else if (typ == MatrixType::Banded)
                typ = MatrixType::Banded_Hermitian;
              else
                typ = MatrixType::Tridiagonal_Hermitian;
            }
        }
    }
}

MatrixType::MatrixType (const SparseComplexMatrix &a)
  : typ (MatrixType::Unknown),
    sp_bandden (0), bandden (0), upper_band (0), lower_band (0),
    dense (false), full (false), nperm (0), perm (0)
{
  octave_idx_type nrows = a.rows ();
  octave_idx_type ncols = a.cols ();
  octave_idx_type nm = (ncols < nrows ? ncols : nrows);
  octave_idx_type nnz = a.nnz ();

  if (octave_sparse_params::get_key ("spumoni") != 0.)
    warn_calculating_sparse_type ();

  sp_bandden = octave_sparse_params::get_bandden ();
  bool maybe_hermitian = false;
  typ = MatrixType::Full;

  if (nnz == nm)
    {
      matrix_type tmp_typ = MatrixType::Diagonal;
      octave_idx_type i;
      // Maybe the matrix is diagonal
      for (i = 0; i < nm; i++)
        {
          if (a.cidx (i+1) != a.cidx (i) + 1)
            {
              tmp_typ = MatrixType::Full;
              break;
            }
          if (a.ridx (i) != i)
            {
              tmp_typ = MatrixType::Permuted_Diagonal;
              break;
            }
        }

      if (tmp_typ == MatrixType::Permuted_Diagonal)
        {
          std::vector<bool> found (nrows);

          for (octave_idx_type j = 0; j < i; j++)
            found[j] = true;
          for (octave_idx_type j = i; j < nrows; j++)
            found[j] = false;

          for (octave_idx_type j = i; j < nm; j++)
            {
              if ((a.cidx (j+1) > a.cidx (j) + 1)
                  || ((a.cidx (j+1) == a.cidx (j) + 1) && found[a.ridx (j)]))
                {
                  tmp_typ = MatrixType::Full;
                  break;
                }
              found[a.ridx (j)] = true;
            }
        }
      typ = tmp_typ;
    }

  if (typ == MatrixType::Full)
    {
      // Search for banded, upper and lower triangular matrices
      bool singular = false;
      upper_band = 0;
      lower_band = 0;
      for (octave_idx_type j = 0; j < ncols; j++)
        {
          bool zero_on_diagonal = false;
          if (j < nrows)
            {
              zero_on_diagonal = true;
              for (octave_idx_type i = a.cidx (j); i < a.cidx (j+1); i++)
                if (a.ridx (i) == j)
                  {
                    zero_on_diagonal = false;
                    break;
                  }
            }

          if (zero_on_diagonal)
            {
              singular = true;
              break;
            }

          if (a.cidx (j+1) != a.cidx (j))
            {
              octave_idx_type ru = a.ridx (a.cidx (j));
              octave_idx_type rl = a.ridx (a.cidx (j+1)-1);

              if (j - ru > upper_band)
                upper_band = j - ru;

              if (rl - j > lower_band)
                lower_band = rl - j;
            }
        }

      if (! singular)
        {
          bandden = double (nnz) /
                    (double (ncols) * (double (lower_band) +
                                       double (upper_band)) -
                     0.5 * double (upper_band + 1) * double (upper_band) -
                     0.5 * double (lower_band + 1) * double (lower_band));

          if (nrows == ncols && sp_bandden != 1. && bandden > sp_bandden)
            {
              if (upper_band == 1 && lower_band == 1)
                typ = MatrixType::Tridiagonal;
              else
                typ = MatrixType::Banded;

              octave_idx_type nnz_in_band =
                (upper_band + lower_band + 1) * nrows -
                (1 + upper_band) * upper_band / 2 -
                (1 + lower_band) * lower_band / 2;
              if (nnz_in_band == nnz)
                dense = true;
              else
                dense = false;
            }
          else if (upper_band == 0)
            typ = MatrixType::Lower;
          else if (lower_band == 0)
            typ = MatrixType::Upper;

          if (upper_band == lower_band && nrows == ncols)
            maybe_hermitian = true;
        }

      if (typ == MatrixType::Full)
        {
          // Search for a permuted triangular matrix, and test if
          // permutation is singular

          // FIXME: Perhaps this should be based on a dmperm algorithm?
          bool found = false;

          nperm = ncols;
          perm = new octave_idx_type [ncols];

          for (octave_idx_type i = 0; i < ncols; i++)
            perm[i] = -1;

          for (octave_idx_type i = 0; i < nm; i++)
            {
              found = false;

              for (octave_idx_type j = 0; j < ncols; j++)
                {
                  if ((a.cidx (j+1) - a.cidx (j)) > 0
                      && (a.ridx (a.cidx (j+1)-1) == i))
                    {
                      perm[i] = j;
                      found = true;
                      break;
                    }
                }

              if (! found)
                break;
            }

          if (found)
            {
              typ = MatrixType::Permuted_Upper;
              if (ncols > nrows)
                {
                  octave_idx_type k = nrows;
                  for (octave_idx_type i = 0; i < ncols; i++)
                    if (perm[i] == -1)
                      perm[i] = k++;
                }
            }
          else if (a.cidx (nm) == a.cidx (ncols))
            {
              nperm = nrows;
              delete [] perm;
              perm = new octave_idx_type [nrows];
              OCTAVE_LOCAL_BUFFER (octave_idx_type, tmp, nrows);

              for (octave_idx_type i = 0; i < nrows; i++)
                {
                  perm[i] = -1;
                  tmp[i] = -1;
                }

              for (octave_idx_type j = 0; j < ncols; j++)
                for (octave_idx_type i = a.cidx (j); i < a.cidx (j+1); i++)
                  perm[a.ridx (i)] = j;

              found = true;
              for (octave_idx_type i = 0; i < nm; i++)
                if (perm[i] == -1)
                  {
                    found = false;
                    break;
                  }
                else
                  {
                    tmp[perm[i]] = 1;
                  }

              if (found)
                {
                  octave_idx_type k = ncols;
                  for (octave_idx_type i = 0; i < nrows; i++)
                    {
                      if (tmp[i] == -1)
                        {
                          if (k < nrows)
                            {
                              perm[k++] = i;
                            }
                          else
                            {
                              found = false;
                              break;
                            }
                        }
                    }
                }

              if (found)
                typ = MatrixType::Permuted_Lower;
              else
                {
                  delete [] perm;
                  nperm = 0;
                }
            }
          else
            {
              delete [] perm;
              nperm = 0;
            }
        }

      // FIXME: Disable lower under-determined and upper over-determined
      //        problems as being detected, and force to treat as singular
      //        as this seems to cause issues.
      if (((typ == MatrixType::Lower || typ == MatrixType::Permuted_Lower)
           && nrows > ncols)
          || ((typ == MatrixType::Upper || typ == MatrixType::Permuted_Upper)
              && nrows < ncols))
        {
          if (typ == MatrixType::Permuted_Upper
              || typ == MatrixType::Permuted_Lower)
            delete [] perm;
          nperm = 0;
          typ = MatrixType::Rectangular;
        }

      if (typ == MatrixType::Full && ncols != nrows)
        typ = MatrixType::Rectangular;

      if (maybe_hermitian && (typ == MatrixType::Full
                              || typ == MatrixType::Tridiagonal
                              || typ == MatrixType::Banded))
        {
          bool is_herm = true;

          // first, check whether the diagonal is positive & extract it
          ColumnVector diag (ncols);

          for (octave_idx_type j = 0; is_herm && j < ncols; j++)
            {
              is_herm = false;
              for (octave_idx_type i = a.cidx (j); i < a.cidx (j+1); i++)
                {
                  if (a.ridx (i) == j)
                    {
                      Complex d = a.data (i);
                      is_herm = d.real () > 0. && d.imag () == 0.;
                      diag(j) = d.real ();
                      break;
                    }
                }
            }

          // next, check symmetry and 2x2 positiveness

          for (octave_idx_type j = 0; is_herm && j < ncols; j++)
            for (octave_idx_type i = a.cidx (j); is_herm && i < a.cidx (j+1); i++)
              {
                octave_idx_type k = a.ridx (i);
                is_herm = k == j;
                if (is_herm)
                  continue;
                Complex d = a.data (i);
                if (std::norm (d) < diag(j)*diag(k))
                  {
                    d = std::conj (d);
                    for (octave_idx_type l = a.cidx (k); l < a.cidx (k+1); l++)
                      {
                        if (a.ridx (l) == j)
                          {
                            is_herm = a.data (l) == d;
                            break;
                          }
                      }
                  }
              }


          if (is_herm)
            {
              if (typ == MatrixType::Full)
                typ = MatrixType::Hermitian;
              else if (typ == MatrixType::Banded)
                typ = MatrixType::Banded_Hermitian;
              else
                typ = MatrixType::Tridiagonal_Hermitian;
            }
        }
    }
}
MatrixType::MatrixType (const matrix_type t, bool _full)
  : typ (MatrixType::Unknown),
    sp_bandden (octave_sparse_params::get_bandden ()),
    bandden (0), upper_band (0), lower_band (0),
    dense (false), full (_full), nperm (0), perm (0)
{
  if (t == MatrixType::Unknown || t == MatrixType::Full
      || t == MatrixType::Diagonal || t == MatrixType::Permuted_Diagonal
      || t == MatrixType::Upper || t == MatrixType::Lower
      || t == MatrixType::Tridiagonal || t == MatrixType::Tridiagonal_Hermitian
      || t == MatrixType::Rectangular)
    typ = t;
  else
    warn_invalid ();
}

MatrixType::MatrixType (const matrix_type t, const octave_idx_type np,
                        const octave_idx_type *p, bool _full)
  : typ (MatrixType::Unknown),
    sp_bandden (octave_sparse_params::get_bandden ()),
    bandden (0), upper_band (0), lower_band (0),
    dense (false), full (_full), nperm (0), perm (0)
{
  if ((t == MatrixType::Permuted_Upper || t == MatrixType::Permuted_Lower)
      && np > 0 && p != 0)
    {
      typ = t;
      nperm = np;
      perm = new octave_idx_type [nperm];
      for (octave_idx_type i = 0; i < nperm; i++)
        perm[i] = p[i];
    }
  else
    warn_invalid ();
}

MatrixType::MatrixType (const matrix_type t, const octave_idx_type ku,
                        const octave_idx_type kl, bool _full)
  : typ (MatrixType::Unknown),
    sp_bandden (octave_sparse_params::get_bandden ()),
    bandden (0), upper_band (0), lower_band (0),
    dense (false), full (_full), nperm (0), perm (0)
{
  if (t == MatrixType::Banded || t == MatrixType::Banded_Hermitian)
    {
      typ = t;
      upper_band = ku;
      lower_band = kl;
    }
  else
    warn_invalid ();
}

MatrixType::~MatrixType (void)
{
  if (nperm != 0)
    {
      delete [] perm;
    }
}

MatrixType&
MatrixType::operator = (const MatrixType& a)
{
  if (this != &a)
    {
      typ = a.typ;
      sp_bandden = a.sp_bandden;
      bandden = a.bandden;
      upper_band = a.upper_band;
      lower_band = a.lower_band;
      dense = a.dense;
      full = a.full;

      if (nperm)
        {
          delete[] perm;
        }

      if (a.nperm != 0)
        {
          perm = new octave_idx_type [a.nperm];
          for (octave_idx_type i = 0; i < a.nperm; i++)
            perm[i] = a.perm[i];
        }

      nperm = a.nperm;
    }

  return *this;
}

int
MatrixType::type (bool quiet)
{
  if (typ != MatrixType::Unknown
      && (full || sp_bandden == octave_sparse_params::get_bandden ()))
    {
      if (! quiet && octave_sparse_params::get_key ("spumoni") != 0.)
        warn_cached ();

      return typ;
    }

  if (typ != MatrixType::Unknown
      && octave_sparse_params::get_key ("spumoni") != 0.)
    (*current_liboctave_warning_with_id_handler)
      ("Octave:matrix-type-info", "invalidating matrix type");

  typ = MatrixType::Unknown;

  return typ;
}

int
MatrixType::type (const SparseMatrix &a)
{
  if (typ != MatrixType::Unknown
      && (full || sp_bandden == octave_sparse_params::get_bandden ()))
    {
      if (octave_sparse_params::get_key ("spumoni") != 0.)
        warn_cached ();

      return typ;
    }

  MatrixType tmp_typ (a);
  typ = tmp_typ.typ;
  sp_bandden = tmp_typ.sp_bandden;
  bandden = tmp_typ.bandden;
  upper_band = tmp_typ.upper_band;
  lower_band = tmp_typ.lower_band;
  dense = tmp_typ.dense;
  full = tmp_typ.full;
  nperm = tmp_typ.nperm;

  if (nperm != 0)
    {
      perm = new octave_idx_type [nperm];
      for (octave_idx_type i = 0; i < nperm; i++)
        perm[i] = tmp_typ.perm[i];
    }

  return typ;
}

int
MatrixType::type (const SparseComplexMatrix &a)
{
  if (typ != MatrixType::Unknown
      && (full || sp_bandden == octave_sparse_params::get_bandden ()))
    {
      if (octave_sparse_params::get_key ("spumoni") != 0.)
        warn_cached ();

      return typ;
    }

  MatrixType tmp_typ (a);
  typ = tmp_typ.typ;
  sp_bandden = tmp_typ.sp_bandden;
  bandden = tmp_typ.bandden;
  upper_band = tmp_typ.upper_band;
  lower_band = tmp_typ.lower_band;
  dense = tmp_typ.dense;
  full = tmp_typ.full;
  nperm = tmp_typ.nperm;

  if (nperm != 0)
    {
      perm = new octave_idx_type [nperm];
      for (octave_idx_type i = 0; i < nperm; i++)
        perm[i] = tmp_typ.perm[i];
    }

  return typ;
}

int
MatrixType::type (const Matrix &a)
{
  if (typ != MatrixType::Unknown)
    {
      if (octave_sparse_params::get_key ("spumoni") != 0.)
        warn_cached ();

      return typ;
    }

  MatrixType tmp_typ (a);
  typ = tmp_typ.typ;
  full = tmp_typ.full;
  nperm = tmp_typ.nperm;

  if (nperm != 0)
    {
      perm = new octave_idx_type [nperm];
      for (octave_idx_type i = 0; i < nperm; i++)
        perm[i] = tmp_typ.perm[i];
    }

  return typ;
}

int
MatrixType::type (const ComplexMatrix &a)
{
  if (typ != MatrixType::Unknown)
    {
      if (octave_sparse_params::get_key ("spumoni") != 0.)
        warn_cached ();

      return typ;
    }

  MatrixType tmp_typ (a);
  typ = tmp_typ.typ;
  full = tmp_typ.full;
  nperm = tmp_typ.nperm;

  if (nperm != 0)
    {
      perm = new octave_idx_type [nperm];
      for (octave_idx_type i = 0; i < nperm; i++)
        perm[i] = tmp_typ.perm[i];
    }

  return typ;
}

int
MatrixType::type (const FloatMatrix &a)
{
  if (typ != MatrixType::Unknown)
    {
      if (octave_sparse_params::get_key ("spumoni") != 0.)
        warn_cached ();

      return typ;
    }

  MatrixType tmp_typ (a);
  typ = tmp_typ.typ;
  full = tmp_typ.full;
  nperm = tmp_typ.nperm;

  if (nperm != 0)
    {
      perm = new octave_idx_type [nperm];
      for (octave_idx_type i = 0; i < nperm; i++)
        perm[i] = tmp_typ.perm[i];
    }

  return typ;
}

int
MatrixType::type (const FloatComplexMatrix &a)
{
  if (typ != MatrixType::Unknown)
    {
      if (octave_sparse_params::get_key ("spumoni") != 0.)
        warn_cached ();

      return typ;
    }

  MatrixType tmp_typ (a);
  typ = tmp_typ.typ;
  full = tmp_typ.full;
  nperm = tmp_typ.nperm;

  if (nperm != 0)
    {
      perm = new octave_idx_type [nperm];
      for (octave_idx_type i = 0; i < nperm; i++)
        perm[i] = tmp_typ.perm[i];
    }

  return typ;
}

void
MatrixType::info () const
{
  if (octave_sparse_params::get_key ("spumoni") != 0.)
    {
      if (typ == MatrixType::Unknown)
        (*current_liboctave_warning_with_id_handler)
          ("Octave:matrix-type-info", "unknown matrix type");
      else if (typ == MatrixType::Diagonal)
        (*current_liboctave_warning_with_id_handler)
          ("Octave:matrix-type-info", "diagonal sparse matrix");
      else if (typ == MatrixType::Permuted_Diagonal)
        (*current_liboctave_warning_with_id_handler)
          ("Octave:matrix-type-info", "permuted diagonal sparse matrix");
      else if (typ == MatrixType::Upper)
        (*current_liboctave_warning_with_id_handler)
          ("Octave:matrix-type-info", "upper triangular matrix");
      else if (typ == MatrixType::Lower)
        (*current_liboctave_warning_with_id_handler)
          ("Octave:matrix-type-info", "lower triangular matrix");
      else if (typ == MatrixType::Permuted_Upper)
        (*current_liboctave_warning_with_id_handler)
          ("Octave:matrix-type-info", "permuted upper triangular matrix");
      else if (typ == MatrixType::Permuted_Lower)
        (*current_liboctave_warning_with_id_handler)
          ("Octave:matrix-type-info", "permuted lower triangular Matrix");
      else if (typ == MatrixType::Banded)
        (*current_liboctave_warning_with_id_handler)
          ("Octave:matrix-type-info",
           "banded sparse matrix %d-1-%d (density %f)",
           lower_band, upper_band, bandden);
      else if (typ == MatrixType::Banded_Hermitian)
        (*current_liboctave_warning_with_id_handler)
          ("Octave:matrix-type-info",
           "banded hermitian/symmetric sparse matrix %d-1-%d (density %f)",
           lower_band, upper_band, bandden);
      else if (typ == MatrixType::Hermitian)
        (*current_liboctave_warning_with_id_handler)
          ("Octave:matrix-type-info", "hermitian/symmetric matrix");
      else if (typ == MatrixType::Tridiagonal)
        (*current_liboctave_warning_with_id_handler)
          ("Octave:matrix-type-info", "tridiagonal sparse matrix");
      else if (typ == MatrixType::Tridiagonal_Hermitian)
        (*current_liboctave_warning_with_id_handler)
          ("Octave:matrix-type-info",
           "hermitian/symmetric tridiagonal sparse matrix");
      else if (typ == MatrixType::Rectangular)
        (*current_liboctave_warning_with_id_handler)
          ("Octave:matrix-type-info", "rectangular/singular matrix");
      else if (typ == MatrixType::Full)
        (*current_liboctave_warning_with_id_handler)
          ("Octave:matrix-type-info", "full matrix");
    }
}

void
MatrixType::mark_as_symmetric (void)
{
  if (typ == MatrixType::Tridiagonal
      || typ == MatrixType::Tridiagonal_Hermitian)
    typ = MatrixType::Tridiagonal_Hermitian;
  else if (typ == MatrixType::Banded || typ == MatrixType::Banded_Hermitian)
    typ = MatrixType::Banded_Hermitian;
  else if (typ == MatrixType::Full || typ == MatrixType::Hermitian
           || typ == MatrixType::Unknown)
    typ = MatrixType::Hermitian;
  else
    (*current_liboctave_error_handler)
      ("Can not mark current matrix type as symmetric");
}

void
MatrixType::mark_as_unsymmetric (void)
{
  if (typ == MatrixType::Tridiagonal
      || typ == MatrixType::Tridiagonal_Hermitian)
    typ = MatrixType::Tridiagonal;
  else if (typ == MatrixType::Banded || typ == MatrixType::Banded_Hermitian)
    typ = MatrixType::Banded;
  else if (typ == MatrixType::Full || typ == MatrixType::Hermitian
           || typ == MatrixType::Unknown)
    typ = MatrixType::Full;
}

void
MatrixType::mark_as_permuted (const octave_idx_type np,
                              const octave_idx_type *p)
{
  nperm = np;
  perm = new octave_idx_type [nperm];
  for (octave_idx_type i = 0; i < nperm; i++)
    perm[i] = p[i];

  if (typ == MatrixType::Diagonal || typ == MatrixType::Permuted_Diagonal)
    typ = MatrixType::Permuted_Diagonal;
  else if (typ == MatrixType::Upper || typ == MatrixType::Permuted_Upper)
    typ = MatrixType::Permuted_Upper;
  else if (typ == MatrixType::Lower || typ == MatrixType::Permuted_Lower)
    typ = MatrixType::Permuted_Lower;
  else
    (*current_liboctave_error_handler)
      ("Can not mark current matrix type as symmetric");
}

void
MatrixType::mark_as_unpermuted (void)
{
  if (nperm)
    {
      nperm = 0;
      delete [] perm;
    }

  if (typ == MatrixType::Diagonal || typ == MatrixType::Permuted_Diagonal)
    typ = MatrixType::Diagonal;
  else if (typ == MatrixType::Upper || typ == MatrixType::Permuted_Upper)
    typ = MatrixType::Upper;
  else if (typ == MatrixType::Lower || typ == MatrixType::Permuted_Lower)
    typ = MatrixType::Lower;
}

MatrixType
MatrixType::transpose (void) const
{
  MatrixType retval (*this);
  if (typ == MatrixType::Upper)
    retval.typ = MatrixType::Lower;
  else if (typ == MatrixType::Permuted_Upper)
    retval.typ = MatrixType::Permuted_Lower;
  else if (typ == MatrixType::Lower)
    retval.typ = MatrixType::Upper;
  else if (typ == MatrixType::Permuted_Lower)
    retval.typ = MatrixType::Permuted_Upper;
  else if (typ == MatrixType::Banded)
    {
      retval.upper_band = lower_band;
      retval.lower_band = upper_band;
    }

  return retval;
}