view scripts/ode/ode23.m @ 31263:449ed6f427cb

ode45/23/23s: Implement Events, OutputFcn, & Refine options (bug #49408 and #63063) * scripts/ode/ode23.m: Remove disabling of Refine option with struct output. Modify solution struct to output two sets of solution variables: output_t, output_x and ode_t and ode_x, and transpose struct output variables for improved Matlab compatibility. Update BISTs and perform minor code formatting. * scripts/ode/ode23s.m: Make same changes as ode23.m. * scripts/ode/ode45.m: Make same changes as ode23.m. Remove comment indicating that Refine is not implemented. * scripts/ode/private/integrate_adaptive.m: Update internal handling of variables t and x, separating them into ode_t & ode_x for internal integration and output_t & output_x for function output or calls to OutputFcn. Replace prior attempt at Refine option with new implementation. Specify time output or Refine != 0 are both interpolated from internal variables (ode_t, ode_x) for output of non-struct variables and/or for use with OutputFcn. Improve event handling when multiple Events (including at least one terminal Event) are detected in a single simulation step so that all Events up to and including the first terminal one are reported, and final data point is set to that of terminal Event. Send multiple data points in a single call to OutputFcn if they are all interpolated from a single integration step. Remove warning for termination when term signal is received from Events or OutputFcn. Return both internal variables (ode_t, ode_x) and interpolated variables (output_t, output_x) to allow calling function to correctly return either struct or separate variables. * scripts/ode/private/ode_event_handler.m: Sort multiple Events in ascending time order when they are encountered in one integration step. Remove any events after the time of a terminal Event. * scripts/ode/odeset.m: Update docstring to remove indication that Refine is not implemented * scripts/ode/odeplot.m: Update docstring to indicate that input t can be a scalar or vector. Add file test. * etc/NEWS.8.md: Add descriptions of changes under General improvements and Matlab compatibility.
author Ken Marek <marek_ka@mercer.edu>
date Wed, 05 Oct 2022 16:53:01 -0400
parents e1788b1a315f
children c332a2f2959f
line wrap: on
line source

########################################################################
##
## Copyright (C) 2006-2022 The Octave Project Developers
##
## See the file COPYRIGHT.md in the top-level directory of this
## distribution or <https://octave.org/copyright/>.
##
## This file is part of Octave.
##
## Octave is free software: you can redistribute it and/or modify it
## under the terms of the GNU General Public License as published by
## the Free Software Foundation, either version 3 of the License, or
## (at your option) any later version.
##
## Octave is distributed in the hope that it will be useful, but
## WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
## GNU General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with Octave; see the file COPYING.  If not, see
## <https://www.gnu.org/licenses/>.
##
########################################################################

## -*- texinfo -*-
## @deftypefn  {} {[@var{t}, @var{y}] =} ode23 (@var{fcn}, @var{trange}, @var{init})
## @deftypefnx {} {[@var{t}, @var{y}] =} ode23 (@var{fcn}, @var{trange}, @var{init}, @var{ode_opt})
## @deftypefnx {} {[@var{t}, @var{y}, @var{te}, @var{ye}, @var{ie}] =} ode23 (@dots{})
## @deftypefnx {} {@var{solution} =} ode23 (@dots{})
## @deftypefnx {} {} ode23 (@dots{})
##
## Solve a set of non-stiff Ordinary Differential Equations (non-stiff ODEs)
## with the well known explicit @nospell{Bogacki-Shampine} method of order 3.
##
## @var{fcn} is a function handle, inline function, or string containing the
## name of the function that defines the ODE: @code{y' = f(t,y)}.  The function
## must accept two inputs where the first is time @var{t} and the second is a
## column vector of unknowns @var{y}.
##
## @var{trange} specifies the time interval over which the ODE will be
## evaluated.  Typically, it is a two-element vector specifying the initial and
## final times (@code{[tinit, tfinal]}).  If there are more than two elements
## then the solution will also be evaluated at these intermediate time
## instances.
##
## By default, @code{ode23} uses an adaptive timestep with the
## @code{integrate_adaptive} algorithm.  The tolerance for the timestep
## computation may be changed by using the options @qcode{"RelTol"} and
## @qcode{"AbsTol"}.
##
## @var{init} contains the initial value for the unknowns.  If it is a row
## vector then the solution @var{y} will be a matrix in which each column is
## the solution for the corresponding initial value in @var{init}.
##
## The optional fourth argument @var{ode_opt} specifies non-default options to
## the ODE solver.  It is a structure generated by @code{odeset}.
##
## The function typically returns two outputs.  Variable @var{t} is a
## column vector and contains the times where the solution was found.  The
## output @var{y} is a matrix in which each column refers to a different
## unknown of the problem and each row corresponds to a time in @var{t}.
##
## The output can also be returned as a structure @var{solution} which has a
## field @var{x} containing a row vector of times where the solution was
## evaluated and a field @var{y} containing the solution matrix such that each
## column corresponds to a time in @var{x}.  Use
## @w{@code{fieldnames (@var{solution})}} to see the other fields and
## additional information returned.
##
## If no output arguments are requested, and no @qcode{"OutputFcn"} is
## specified in @var{ode_opt}, then the @qcode{"OutputFcn"} is set to
## @code{odeplot} and the results of the solver are plotted immediately.
##
## If using the @qcode{"Events"} option then three additional outputs may be
## returned.  @var{te} holds the time when an Event function returned a zero.
## @var{ye} holds the value of the solution at time @var{te}.  @var{ie}
## contains an index indicating which Event function was triggered in the case
## of multiple Event functions.
##
## Example: Solve the @nospell{Van der Pol} equation
##
## @example
## @group
## fvdp = @@(@var{t},@var{y}) [@var{y}(2); (1 - @var{y}(1)^2) * @var{y}(2) - @var{y}(1)];
## [@var{t},@var{y}] = ode23 (fvdp, [0, 20], [2, 0]);
## @end group
## @end example
##
## Reference: For the definition of this method see
## @url{https://en.wikipedia.org/wiki/List_of_Runge%E2%80%93Kutta_methods}.
## @seealso{odeset, odeget, ode45, ode15s}
## @end deftypefn

function varargout = ode23 (fcn, trange, init, varargin)

  if (nargin < 3)
    print_usage ();
  endif

  solver = "ode23";
  order  = 3;

  if (nargin >= 4)
    if (! isstruct (varargin{1}))
      ## varargin{1:len} are parameters for fcn
      odeopts = odeset ();
      funarguments = varargin;
    elseif (numel (varargin) > 1)
      ## varargin{1} is an ODE options structure opt
      odeopts = varargin{1};
      funarguments = {varargin{2:numel (varargin)}};
    else
      ## varargin{1} is an ODE options structure opt
      odeopts = varargin{1};
      funarguments = {};
    endif
  else  # nargin == 3
    odeopts = odeset ();
    funarguments = {};
  endif

  if (! isnumeric (trange) || ! isvector (trange))
    error ("Octave:invalid-input-arg",
           "ode23: TRANGE must be a numeric vector");
  endif

  if (numel (trange) < 2)
    error ("Octave:invalid-input-arg",
           "ode23: TRANGE must contain at least 2 elements");
  elseif (trange(2) == trange(1))
    error ("Octave:invalid-input-arg",
           "ode23: invalid time span, TRANGE(1) == TRANGE(2)");
  else
    direction = sign (trange(2) - trange(1));
  endif
  trange = trange(:);

  if (! isnumeric (init) || ! isvector (init))
    error ("Octave:invalid-input-arg",
           "ode23: INIT must be a numeric vector");
  endif
  init = init(:);

  if (ischar (fcn))
    if (! exist (fcn))
      error ("Octave:invalid-input-arg",
             ['ode23: function "' fcn '" not found']);
    endif
    fcn = str2func (fcn);
  endif
  if (! is_function_handle (fcn))
    error ("Octave:invalid-input-arg",
           "ode23: FCN must be a valid function handle");
  endif

  ## Start preprocessing, have a look which options are set in odeopts,
  ## check if an invalid or unused option is set.
  [defaults, classes, attributes] = odedefaults (numel (init),
                                                 trange(1), trange(end));

  persistent ode23_ignore_options = ...
    {"BDF", "InitialSlope", "Jacobian", "JPattern",
     "MassSingular", "MaxOrder", "MvPattern", "Vectorized"};

  defaults   = rmfield (defaults, ode23_ignore_options);
  classes    = rmfield (classes, ode23_ignore_options);
  attributes = rmfield (attributes, ode23_ignore_options);

  odeopts = odemergeopts ("ode23", odeopts, defaults, classes, attributes);

  odeopts.funarguments = funarguments;
  odeopts.direction    = direction;

  if (! isempty (odeopts.NonNegative))
    if (isempty (odeopts.Mass))
      odeopts.havenonnegative = true;
    else
      odeopts.havenonnegative = false;
      warning ("Octave:invalid-input-arg",
               ['ode23: option "NonNegative" is ignored', ...
                " when mass matrix is set\n"]);
    endif
  else
    odeopts.havenonnegative = false;
  endif

  if (isempty (odeopts.OutputFcn) && nargout == 0)
    odeopts.OutputFcn = @odeplot;
    odeopts.haveoutputfunction = true;
  else
    odeopts.haveoutputfunction = ! isempty (odeopts.OutputFcn);
  endif

  if (isempty (odeopts.InitialStep))
    odeopts.InitialStep = odeopts.direction * ...
                          starting_stepsize (order, fcn, trange(1), init,
                                             odeopts.AbsTol, odeopts.RelTol,
                                             strcmpi (odeopts.NormControl,
                                             "on"), odeopts.funarguments);
  endif

  if (! isempty (odeopts.Mass))
    if (isnumeric (odeopts.Mass))
      havemasshandle = false;
      mass = odeopts.Mass;  # constant mass
    elseif (is_function_handle (odeopts.Mass))
      havemasshandle = true;    # mass defined by a function handle
    else
      error ("Octave:invalid-input-arg",
             'ode45: "Mass" field must be a function handle or square matrix');
    endif
  else  # no mass matrix - create a diag-matrix of ones for mass
    havemasshandle = false;   # mass = diag (ones (length (init), 1), 0);
  endif

  ## Starting the initialization of the core solver ode23

  if (havemasshandle)   # Handle only the dynamic mass matrix,
    if (! strcmp (odeopts.MStateDependence, "none"))
      ## constant mass matrices have already been handled
      mass = @(t,x) odeopts.Mass (t, x, odeopts.funarguments{:});
      fcn = @(t,x) mass (t, x, odeopts.funarguments{:}) ...
                   \ fcn (t, x, odeopts.funarguments{:});
    else
      mass = @(t) odeopts.Mass (t, odeopts.funarguments{:});
      fcn = @(t,x) mass (t, odeopts.funarguments{:}) ...
                   \ fcn (t, x, odeopts.funarguments{:});
    endif
  endif

  if (numel (trange) > 2)
    odeopts.Refine = [];  # disable Refine when specific times requested
  endif

  solution = integrate_adaptive (@runge_kutta_23,
                                 order, fcn, trange, init, odeopts);

  ## Postprocessing, do whatever when terminating integration algorithm
  if (odeopts.haveoutputfunction)  # Cleanup plotter
    feval (odeopts.OutputFcn, [], [], "done", odeopts.funarguments{:});
  endif
  if (! isempty (odeopts.Events))   # Cleanup event function handling
    ode_event_handler (odeopts.Events, solution.ode_t(end), ...
                       solution.ode_x(end,:).', "done", ...
                       odeopts.funarguments{:});
  endif

  ## Print additional information if option Stats is set
  if (strcmpi (odeopts.Stats, "on"))
    nsteps    = solution.cntloop;             # cntloop from 2..end
    nfailed   = solution.cntcycles - nsteps;  # cntcycl from 1..end
    nfevals   = 3 * solution.cntcycles + 1;   # number of ode evaluations
    ndecomps  = 0;  # number of LU decompositions
    npds      = 0;  # number of partial derivatives
    nlinsols  = 0;  # no. of solutions of linear systems

    printf ("Number of successful steps: %d\n", nsteps);
    printf ("Number of failed attempts:  %d\n", nfailed);
    printf ("Number of function calls:   %d\n", nfevals);
  endif

  if (nargout == 2)
    varargout{1} = solution.output_t; # Time stamps are first output argument
    varargout{2} = solution.output_x; # Results are second output argument
  elseif (nargout == 1)
    varargout{1}.x = solution.ode_t.'; #Time stamps saved in field x (row vect.)
    varargout{1}.y = solution.ode_x.'; #Results are saved in field y (row vect.)
    varargout{1}.solver = solver; # Solver name is saved in field solver
    if (! isempty (odeopts.Events))
      varargout{1}.xe = solution.event{3}.'; # Time info when an event occurred
      varargout{1}.ye = solution.event{4}.'; # Results when an event occurred
      varargout{1}.ie = solution.event{2}.'; # Index info which event occurred
    endif
    if (strcmpi (odeopts.Stats, "on"))
      varargout{1}.stats = struct ();
      varargout{1}.stats.nsteps   = nsteps;
      varargout{1}.stats.nfailed  = nfailed;
      varargout{1}.stats.nfevals  = nfevals;
      varargout{1}.stats.npds     = npds;
      varargout{1}.stats.ndecomps = ndecomps;
      varargout{1}.stats.nlinsols = nlinsols;
    endif
  elseif (nargout > 2)
    varargout = cell (1,5);
    varargout{1} = solution.output_t;
    varargout{2} = solution.output_x;
    if (! isempty (odeopts.Events))
      varargout{3} = solution.event{3};  # Time info when an event occurred
      varargout{4} = solution.event{4};  # Results when an event occurred
      varargout{5} = solution.event{2};  # Index info which event occurred
    endif
  endif

endfunction


%!demo
%! ## Demonstrate convergence order for ode23
%! tol = 1e-5 ./ 10.^[0:8];
%! for i = 1 : numel (tol)
%!   opt = odeset ("RelTol", tol(i), "AbsTol", realmin);
%!   [t, y] = ode23 (@(t, y) -y, [0, 1], 1, opt);
%!   h(i) = 1 / (numel (t) - 1);
%!   err(i) = norm (y .* exp (t) - 1, Inf);
%! endfor
%!
%! ## Estimate order visually
%! loglog (h, tol, "-ob",
%!         h, err, "-b",
%!         h, (h/h(end)) .^ 2 .* tol(end), "k--",
%!         h, (h/h(end)) .^ 3 .* tol(end), "k-");
%! axis tight
%! xlabel ("h");
%! ylabel ("err(h)");
%! title ("Convergence plot for ode23");
%! legend ("imposed tolerance", "ode23 (relative) error",
%!         "order 2", "order 3", "location", "northwest");
%!
%! ## Estimate order numerically
%! p = diff (log (err)) ./ diff (log (h))

## We are using the Van der Pol equation for all tests.
## Further tests also define a reference solution (computed at high accuracy)
%!function ydot = fpol (t, y, varargin)  # The Van der Pol ODE
%!  ydot = [y(2); (1 - y(1)^2) * y(2) - y(1)];
%!endfunction
%!function ref = fref ()       # The computed reference sol
%!  ref = [0.32331666704577, -1.83297456798624];
%!endfunction
%!function [val, trm, dir] = feve (t, y, varargin)
%!  val = fpol (t, y, varargin{:});  # We use the derivatives
%!  trm = zeros (2,1);            # that's why component 2
%!  dir = ones (2,1);             # does not seem to be exact
%!endfunction
%!function [val, trm, dir] = fevn (t, y, varargin)
%!  val = fpol (t, y, varargin{:});  # We use the derivatives
%!  trm = ones (2,1);             # that's why component 2
%!  dir = ones (2,1);             # does not seem to be exact
%!endfunction
%!function mas = fmas (t, y, varargin)
%!  mas = [1, 0; 0, 1];           # Dummy mass matrix for tests
%!endfunction
%!function mas = fmsa (t, y, varargin)
%!  mas = sparse ([1, 0; 0, 1]);  # A sparse dummy matrix
%!endfunction
%!function out = fout (t, y, flag, varargin)
%!  out = false;
%!  if (strcmp (flag, "init"))
%!    if (! isequal (size (t), [2, 1]))
%!      error ('fout: step "init"');
%!    endif
%!  elseif (isempty (flag))
%!  # Multiple steps can be sent in one function call
%!    if (! isequal ( size (t), size (y)))
%!      error ('fout: step "calc"');
%!    endif
%!  elseif (strcmp (flag, "done"))
%!    if (! isempty (t))
%!      warning ('fout: step "done"');
%!    endif
%!  else
%!    error ("fout: invalid flag <%s>", flag);
%!  endif
%!endfunction
%!
%!test  # two output arguments
%! [t, y] = ode23 (@fpol, [0 2], [2 0]);
%! assert ([t(end), y(end,:)], [2, fref], 1e-3);
%!test  # correct number of steps with Refine
%! [t1, y1] = ode23 (@fpol, [0 2], [2 0], odeset ("Refine", 1));
%! [t2, y2] = ode23 (@fpol, [0 2], [2 0], odeset ("Refine", 4));
%! [t3, y3] = ode23 (@fpol, [0 2], [2 0]); #default Refine=1
%! s = ode23 (@fpol, [0 2], [2 0], odeset ("Refine", 4));
%! assert (length (t1) == length (t3));
%! assert (length (t2) == 4*length (t1) - 3);
%! assert (length (s.x) == length (t1));
%!test  # anonymous function instead of real function
%! fvdp = @(t,y) [y(2); (1 - y(1)^2) * y(2) - y(1)];
%! [t, y] = ode23 (fvdp, [0 2], [2 0]);
%! assert ([t(end), y(end,:)], [2, fref], 1e-3);
%!test  # extra input arguments passed through
%! [t, y] = ode23 (@fpol, [0 2], [2 0], 12, 13, "KL");
%! assert ([t(end), y(end,:)], [2, fref], 1e-3);
%!test  # empty OdePkg structure *but* extra input arguments
%! opt = odeset ();
%! [t, y] = ode23 (@fpol, [0 2], [2 0], opt, 12, 13, "KL");
%! assert ([t(end), y(end,:)], [2, fref], 1e-2);
%!test  # Solve another anonymous function below zero
%! ref = [0, 14.77810590694212];
%! [t, y] = ode23 (@(t,y) y, [-2 0], 2);
%! assert ([t(end), y(end,:)], ref, 1e-2);
%!test  # InitialStep option
%! opt = odeset ("InitialStep", 1e-8);
%! [t, y] = ode23 (@fpol, [0 0.2], [2 0], opt);
%! assert ([t(2)-t(1)], [1e-8], 1e-9);
%!test  # MaxStep option
%! opt = odeset ("MaxStep", 1e-3);
%! sol = ode23 (@fpol, [0 0.2], [2 0], opt);
%! assert ([sol.x(5)-sol.x(4)], [1e-3], 1e-4);
%!test  # Solve in backward direction starting at t=0
%! ref = [-1.205364552835178, 0.951542399860817];
%! sol = ode23 (@fpol, [0 -2], [2 0]);
%! assert ([sol.x(end); sol.y(:,end)], [-2; ref'], 5e-3);
%!test  # Solve in backward direction starting at t=2
%! ref = [-1.205364552835178, 0.951542399860817];
%! sol = ode23 (@fpol, [2 0 -2], fref);
%! assert ([sol.x(end); sol.y(:,end)], [-2; ref'], 2e-2);
%!test  # Solve another anonymous function in backward direction
%! ref = [-1, 0.367879437558975];
%! sol = ode23 (@(t,y) y, [0 -1], 1);
%! assert ([sol.x(end); sol.y(:,end)], ref', 1e-2);
%!test  # Solve another anonymous function below zero
%! ref = [0, 14.77810590694212];
%! sol = ode23 (@(t,y) y, [-2 0], 2);
%! assert ([sol.x(end); sol.y(:,end)], ref', 1e-2);
%!test  # Solve in backward direction starting at t=0 with MaxStep option
%! ref = [-1.205364552835178, 0.951542399860817];
%! opt = odeset ("MaxStep", 1e-3);
%! sol = ode23 (@fpol, [0 -2], [2 0], opt);
%! assert ([abs(sol.x(8)-sol.x(7))], [1e-3], 1e-3);
%! assert ([sol.x(end); sol.y(:,end)], [-2; ref'], 1e-3);
%!test  # AbsTol option
%! opt = odeset ("AbsTol", 1e-5);
%! sol = ode23 (@fpol, [0 2], [2 0], opt);
%! assert ([sol.x(end); sol.y(:,end)], [2; fref'], 1e-3);
%!test  # AbsTol and RelTol option
%! opt = odeset ("AbsTol", 1e-8, "RelTol", 1e-8);
%! sol = ode23 (@fpol, [0 2], [2 0], opt);
%! assert ([sol.x(end); sol.y(:,end)], [2; fref'], 1e-3);
%!test # hermite_cubic_interpolation
%! opt = odeset ("RelTol", 1e-8, "NormControl", "on");
%! [t,sol] = ode23(@(t,x)[x(2);x(1)],linspace(0,1),[1;0],opt);
%! assert (max (abs (sol(:,1)-cosh (t))),0,1e-6);
%!test  # RelTol and NormControl option -- higher accuracy
%! opt = odeset ("RelTol", 1e-8, "NormControl", "on");
%! sol = ode23 (@fpol, [0 2], [2 0], opt);
%! assert ([sol.x(end); sol.y(:,end)], [2; fref'], 1e-4);
%!test  # Keeps initial values while integrating
%! opt = odeset ("NonNegative", 2);
%! sol = ode23 (@fpol, [0 2], [2 0], opt);
%! assert ([sol.x(end); sol.y(:,end)], [2; 2; 0], 1e-1);
%!test  # Details of OutputSel can't be tested
%! opt = odeset ("OutputFcn", @fout, "OutputSel", 1);
%! sol = ode23 (@fpol, [0 2], [2 0], opt);
%!test  # Stats must add further elements in sol
%! opt = odeset ("Stats", "on");
%! stat_str = evalc ("sol = ode23 (@fpol, [0 2], [2 0], opt);");
%! assert (strncmp (stat_str, "Number of successful steps:", 27));
%! assert (isfield (sol, "stats"));
%! assert (isfield (sol.stats, "nsteps"));
%!test  # Events option add further elements in sol
%! opt = odeset ("Events", @feve);
%! sol = ode23 (@fpol, [0 10], [2 0], opt);
%! assert (isfield (sol, "ie"));
%! assert (sol.ie(1), 2);
%! assert (isfield (sol, "xe"));
%! assert (isfield (sol, "ye"));
%!test  # Events option, now stop integration
%! opt = odeset ("Events", @fevn, "NormControl", "on");
%! sol = ode23 (@fpol, [0 10], [2 0], opt);
%! assert ([sol.ie, sol.xe, sol.ye.'],
%!         [2.0, 2.496110, -0.830550, -2.677589], .5e-1);
%!test  # Events option, five output arguments
%! opt = odeset ("Events", @fevn, "NormControl", "on");
%! [t, y, vxe, ye, vie] = ode23 (@fpol, [0 10], [2 0], opt);
%! assert ([vie, vxe, ye], [2.0, 2.496110, -0.830550, -2.677589], 1e-1);
%!test  # Mass option as function
%! opt = odeset ("Mass", @fmas);
%! sol = ode23 (@fpol, [0 2], [2 0], opt);
%! assert ([sol.x(end); sol.y(:,end)], [2; fref'], 1e-3);
%!test  # Mass option as matrix
%! opt = odeset ("Mass", eye (2,2));
%! sol = ode23 (@fpol, [0 2], [2 0], opt);
%! assert ([sol.x(end); sol.y(:,end)], [2; fref'], 1e-3);
%!test  # Mass option as sparse matrix
%! opt = odeset ("Mass", sparse (eye (2,2)));
%! sol = ode23 (@fpol, [0 2], [2 0], opt);
%! assert ([sol.x(end); sol.y(:,end)], [2; fref'], 1e-3);
%!test  # Mass option as function and sparse matrix
%! opt = odeset ("Mass", @fmsa);
%! sol = ode23 (@fpol, [0 2], [2 0], opt);
%! assert ([sol.x(end); sol.y(:,end)], [2; fref'], 1e-3);
%!test  # Mass option as function and MStateDependence
%! opt = odeset ("Mass", @fmas, "MStateDependence", "strong");
%! sol = ode23 (@fpol, [0 2], [2 0], opt);
%! assert ([sol.x(end); sol.y(:,end)], [2; fref'], 1e-3);

## Note: The following options have no effect on this solver
##       therefore it makes no sense to test them here:
##
## "BDF"
## "InitialSlope"
## "JPattern"
## "Jacobian"
## "MassSingular"
## "MaxOrder"
## "MvPattern"
## "Vectorized"

%!test # Check that imaginary part of solution does not get inverted
%! sol = ode23 (@(x,y) 1, [0 1], 1i);
%! assert (imag (sol.y), ones (size (sol.y)));
%! [x, y] = ode23 (@(x,y) 1, [0 1], 1i);
%! assert (imag (y), ones (size (y)));

## FIXME: convert to demo or a visible=off test with failable assert/error
##        statemments
##%!test # Make sure odeplot works (default OutputFcn when no return value)
##%! ode23 (@fpol, [0 2], [2 0]);
##%! close all

## Test input validation
%!error <Invalid call> ode23 ()
%!error <Invalid call> ode23 (1)
%!error <Invalid call> ode23 (1,2)
%!error <TRANGE must be a numeric> ode23 (@fpol, {[0 25]}, [3 15 1])
%!error <TRANGE must be a .* vector> ode23 (@fpol, [0 25; 25 0], [3 15 1])
%!error <TRANGE must contain at least 2 elements> ode23 (@fpol, [1], [3 15 1])
%!error <invalid time span>  ode23 (@fpol, [1 1], [3 15 1])
%!error <INIT must be a numeric> ode23 (@fpol, [0 25], {[3 15 1]})
%!error <INIT must be a .* vector> ode23 (@fpol, [0 25], [3 15 1; 3 15 1])
%!error <FCN must be a valid function handle> ode23 (1, [0 25], [3 15 1])