view scripts/ode/private/integrate_adaptive.m @ 31263:449ed6f427cb

ode45/23/23s: Implement Events, OutputFcn, & Refine options (bug #49408 and #63063) * scripts/ode/ode23.m: Remove disabling of Refine option with struct output. Modify solution struct to output two sets of solution variables: output_t, output_x and ode_t and ode_x, and transpose struct output variables for improved Matlab compatibility. Update BISTs and perform minor code formatting. * scripts/ode/ode23s.m: Make same changes as ode23.m. * scripts/ode/ode45.m: Make same changes as ode23.m. Remove comment indicating that Refine is not implemented. * scripts/ode/private/integrate_adaptive.m: Update internal handling of variables t and x, separating them into ode_t & ode_x for internal integration and output_t & output_x for function output or calls to OutputFcn. Replace prior attempt at Refine option with new implementation. Specify time output or Refine != 0 are both interpolated from internal variables (ode_t, ode_x) for output of non-struct variables and/or for use with OutputFcn. Improve event handling when multiple Events (including at least one terminal Event) are detected in a single simulation step so that all Events up to and including the first terminal one are reported, and final data point is set to that of terminal Event. Send multiple data points in a single call to OutputFcn if they are all interpolated from a single integration step. Remove warning for termination when term signal is received from Events or OutputFcn. Return both internal variables (ode_t, ode_x) and interpolated variables (output_t, output_x) to allow calling function to correctly return either struct or separate variables. * scripts/ode/private/ode_event_handler.m: Sort multiple Events in ascending time order when they are encountered in one integration step. Remove any events after the time of a terminal Event. * scripts/ode/odeset.m: Update docstring to remove indication that Refine is not implemented * scripts/ode/odeplot.m: Update docstring to indicate that input t can be a scalar or vector. Add file test. * etc/NEWS.8.md: Add descriptions of changes under General improvements and Matlab compatibility.
author Ken Marek <marek_ka@mercer.edu>
date Wed, 05 Oct 2022 16:53:01 -0400
parents e1788b1a315f
children 88fff8521d76
line wrap: on
line source

########################################################################
##
## Copyright (C) 2013-2022 The Octave Project Developers
##
## See the file COPYRIGHT.md in the top-level directory of this
## distribution or <https://octave.org/copyright/>.
##
## This file is part of Octave.
##
## Octave is free software: you can redistribute it and/or modify it
## under the terms of the GNU General Public License as published by
## the Free Software Foundation, either version 3 of the License, or
## (at your option) any later version.
##
## Octave is distributed in the hope that it will be useful, but
## WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
## GNU General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with Octave; see the file COPYING.  If not, see
## <https://www.gnu.org/licenses/>.
##
########################################################################

## -*- texinfo -*-
## @deftypefn {} {@var{solution} =} integrate_adaptive (@var{@@stepper}, @var{order}, @var{@@fcn}, @var{tspan}, @var{x0}, @var{options})
##
## This function file can be called by an ODE solver function in order to
## integrate the set of ODEs on the interval @var{[t0, t1]} with an adaptive
## timestep.
##
## The function returns a structure @var{solution} with two fields: @var{t}
## and @var{y}.  @var{t} is a column vector and contains the time stamps.
## @var{y} is a matrix in which each column refers to a different unknown
## of the problem and the row number is the same as the @var{t} row number.
## Thus, each row of the matrix @var{y} contains the values of all unknowns at
## the time value contained in the corresponding row in @var{t}.
##
## The first input argument must be a function handle or inline function
## representing the stepper, i.e., the function responsible for step-by-step
## integration.  This function discriminates one method from the others.
##
## The second input argument is the order of the stepper.  It is needed
## to compute the adaptive timesteps.
##
## The third input argument is a function handle or inline function that
## defines the ODE:
##
## @ifhtml
##
## @example
## @math{y' = f(t,y)}
## @end example
##
## @end ifhtml
## @ifnothtml
## @math{y' = f(t,y)}.
## @end ifnothtml
##
## The fourth input argument is the time vector which defines the integration
## interval, i.e., @var{[tspan(1), tspan(end)]} and all intermediate elements
## are taken as times at which the solution is required.
##
## The fifth argument represents the initial conditions for the ODEs and the
## last input argument contains some options that may be needed for the
## stepper.
##
## @end deftypefn

function solution = integrate_adaptive (stepper, order, fcn, tspan, x0,
                                        options)

  fixed_times = numel (tspan) > 2;

  t_new = t_old = ode_t = output_t = tspan(1);
  x_new = x_old = ode_x = output_x = x0(:);

  ## Get first initial timestep
  dt = options.InitialStep;
  if (isempty (dt))
    dt = starting_stepsize (order, fcn, ode_t, ode_x,
                            options.AbsTol, options.RelTol,
                            strcmp (options.NormControl, "on"),
                            options.funarguments);
  endif

  dir = options.direction;
  dt = dir * min (abs (dt), options.MaxStep);

  options.comp = 0.0;

  ## Factor multiplying the stepsize guess
  facmin = 0.8;
  facmax = 1.5;
  fac = 0.38^(1/(order+1));  # formula taken from Hairer

  ## Initialize Refine value
  refine = options.Refine;
  if isempty (refine)
    refine = 1;
  elseif ((refine != round (refine)) || (refine < 1))
    refine = 1;
    warning ("integrate_adaptive:invalid_refine",
               ["Invalid value of Refine. Refine must be a positive " ...
                "integer. Setting Refine = 1."] );
  endif

  ## Initialize the OutputFcn
  if (options.haveoutputfunction)
    if (! isempty (options.OutputSel))
      solution.retout = output_x(options.OutputSel, end);
    else
      solution.retout = output_x;
    endif
    feval (options.OutputFcn, tspan, solution.retout, "init",
           options.funarguments{:});
  endif

  ## Initialize the EventFcn
  have_EventFcn = false;
  if (! isempty (options.Events))
    have_EventFcn  = true;
    ode_event_handler (options.Events, tspan(1), ode_x,
                       "init", options.funarguments{:});
  endif

  if (options.havenonnegative)
    nn = options.NonNegative;
  endif

  solution.cntloop = 0;
  solution.cntcycles = 0;
  solution.cntsave = 2;
  solution.unhandledtermination = true;
  ireject = 0;

  NormControl = strcmp (options.NormControl, "on");
  k_vals = [];
  iout = istep = 1;

  while (dir * t_old < dir * tspan(end))

    ## Compute integration step from t_old to t_new = t_old + dt
    [t_new, options.comp] = kahan (t_old, options.comp, dt);
    [t_new, x_new, x_est, new_k_vals] = ...
      stepper (fcn, t_old, x_old, dt, options, k_vals, t_new);

    solution.cntcycles += 1;

    if (options.havenonnegative)
      x_new(nn, end) = abs (x_new(nn, end));
      x_est(nn, end) = abs (x_est(nn, end));
    endif

    err = AbsRel_norm (x_new, x_old, options.AbsTol, options.RelTol,
                       NormControl, x_est);

    ## Accept solution only if err <= 1.0
    if (err <= 1)

      solution.cntloop += 1;
      ireject = 0;              # Clear reject counter
      terminal_event = false;
      terminal_output = false;

      istep++;
      ode_t(istep) = t_new;
      ode_x(:, istep) = x_new;
      iadd = 0;                 # Number of output points added this iteration

      ## Check for Events
      if (have_EventFcn)
        solution.event = ode_event_handler (options.Events, t_new, x_new, ...
                                            [], options.funarguments{:});
        ## Check for terminal Event
        if (! isempty (solution.event{1}) && solution.event{1} == 1)
          ode_t(istep) = solution.event{3}(end);
          ode_x(:, istep) = solution.event{4}(end, :).';
          solution.unhandledtermination = false;
          terminal_event = true;
        endif
      endif

      ## Interpolate to specified or Refined points
      if (fixed_times)
        t_caught = find ((dir * tspan(iout:end) > dir * t_old) ...
                         & (dir * tspan(iout:end) <= dir * ode_t(istep)));
        t_caught = t_caught + iout - 1;
        iadd = length (t_caught);
        if (! isempty (t_caught))
          output_t(t_caught) = tspan(t_caught);
          iout = max (t_caught);
          output_x(:, t_caught) = ...
            runge_kutta_interpolate (order, [t_old t_new], [x_old x_new], ...
                                     output_t(t_caught), new_k_vals, dt, ...
                                     fcn, options.funarguments);
        endif
        ## Add a possible additional output value if we found a terminal Event
        if ((terminal_event == true) && ...
            (dir * ode_t(istep) > dir * output_t(iout)))
          iadd += 1;
          iout += 1;
          output_x(:, iout) = ode_x(:, istep);
          output_t(iout) = ode_t(istep);
        endif
      elseif (refine > 1)
        iadd = refine;
        tadd = linspace (t_old, ode_t(istep), refine + 1);
        tadd = tadd(2:end);
        output_x(:, iout + (1:iadd)) = ...
          runge_kutta_interpolate (order, [t_old t_new], [x_old x_new], ...
                                   tadd, new_k_vals, dt, fcn, ...
                                   options.funarguments);
        output_t(iout + (1:iadd)) = tadd;
        iout = length (output_t);
      else                         # refine = 1
        iadd = 1;
        iout += iadd;
        output_x(:, iout) = ode_x(:, istep);
        output_t(iout) = ode_t(istep);
      end

      ## Call OutputFcn
      if ((options.haveoutputfunction) && (iadd > 0))
        xadd = output_x(:, (iout-iadd+1):end);
        tadd = output_t((iout-iadd+1):end);
        if (! isempty (options.OutputSel))
          xadd = xadd(options.OutputSel, :);
        endif
        stop_solve = feval (options.OutputFcn, tadd, xadd, ...
                            [], options.funarguments{:});
        if (stop_solve)
          solution.unhandledtermination = false;
          terminal_output = true;
        endif
      endif
      if (terminal_event || terminal_output)
        break;                     # break from main loop
      endif


      ## move to next time-step
      t_old = t_new;
      x_old = x_new;
      k_vals = new_k_vals;

    else  # error condition

      ireject += 1;

      ## Stop solving if, in the last 5,000 steps, no successful valid
      ## value has been found.
      if (ireject >= 5_000)
        error (["integrate_adaptive: Solving was not successful. ", ...
                " The iterative integration loop exited at time", ...
                " t = %f before the endpoint at tend = %f was reached. ", ...
                " This happened because the iterative integration loop", ...
                " did not find a valid solution at this time stamp. ", ...
                " Try to reduce the value of 'InitialStep' and/or", ...
                " 'MaxStep' with the command 'odeset'.\n"],
               t_old, tspan(end));
      endif

    endif

    ## Compute next timestep, formula taken from Hairer
    err += eps;  # avoid divisions by zero
    dt *= min (facmax, max (facmin, fac * (1 / err)^(1 / (order + 1))));
    dt = dir * min (abs (dt), options.MaxStep);
    if (! (abs (dt) > eps (ode_t(end))))
      break;
    endif

    ## Make sure we don't go past tpan(end)
    dt = dir * min (abs (dt), abs (tspan(end) - t_old));

  endwhile

  ## Check if integration of the ode has been successful
  if (dir * ode_t(end) < dir * tspan(end))
    if (solution.unhandledtermination == true)
      warning ("integrate_adaptive:unexpected_termination",
               [" Solving was not successful. ", ...
                " The iterative integration loop exited at time", ...
                " t = %f before the endpoint at tend = %f was reached. ", ...
                " This may happen if the stepsize becomes too small. ", ...
                " Try to reduce the value of 'InitialStep'", ...
                " and/or 'MaxStep' with the command 'odeset'."],
               ode_t(end), tspan(end));
    endif
  endif

  ## Set up return structure
  solution.ode_t = ode_t(:);
  solution.ode_x = ode_x.';
  solution.output_t = output_t(:);
  solution.output_x = output_x.';

endfunction