view scripts/general/cart2sph.m @ 31063:451fb63a10a0

update integral to call quadgk for 'ArrayValued' integrations (bug #62468) * integral.m: Modify integrator selection so that calls with ‘ArrayValued’ go to quadgk instead of quadv. Remove error checks for previously incompatible parameter combinations. Update docstring to remove mention of quadv, point 'ArrayValued' reference to quadgk, change returned error parameter description to match current behavior, and remove parameter incompatibility note. Add BIST to verify combined parameter functionality, and change BISTs checking quadv err parameter. * quadgk.m: Correct parameter name in docstring. * NEWS.8.md: Under General Improvements add note about quadgk now accepting 'ArrayValued' parameter and update integral improvement description of optional returned error parameter. Under Matlab Compatibility add note about integral now accepting all parameter combinations.
author Nicholas R. Jankowski <jankowski.nicholas@gmail.com>
date Thu, 02 Jun 2022 19:56:15 -0400
parents 796f54d4ddbf
children 597f3ee61a48
line wrap: on
line source

########################################################################
##
## Copyright (C) 2000-2022 The Octave Project Developers
##
## See the file COPYRIGHT.md in the top-level directory of this
## distribution or <https://octave.org/copyright/>.
##
## This file is part of Octave.
##
## Octave is free software: you can redistribute it and/or modify it
## under the terms of the GNU General Public License as published by
## the Free Software Foundation, either version 3 of the License, or
## (at your option) any later version.
##
## Octave is distributed in the hope that it will be useful, but
## WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
## GNU General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with Octave; see the file COPYING.  If not, see
## <https://www.gnu.org/licenses/>.
##
########################################################################

## -*- texinfo -*-
## @deftypefn  {} {[@var{theta}, @var{phi}, @var{r}] =} cart2sph (@var{x}, @var{y}, @var{z})
## @deftypefnx {} {[@var{theta}, @var{phi}, @var{r}] =} cart2sph (@var{C})
## Transform Cartesian coordinates to spherical coordinates.
##
## The inputs @var{x}, @var{y}, and @var{z} must be the same shape, or scalar.
## If called with a single matrix argument then each row of @var{C} must
## represent a Cartesian coordinate triplet (@var{x}, @var{y}, @var{z}).
##
## The outputs @var{theta}, @var{phi}, @var{r} match the shape of the inputs.
## For a matrix input @var{C} the outputs will be column vectors with rows
## corresponding to the rows of the input matrix.
##
## @var{theta} describes the azimuth angle relative to the positive x-axis
## measured in the xy-plane.
##
## @var{phi} is the elevation angle measured relative to the xy-plane.
##
## @var{r} is the distance to the origin @w{(0, 0, 0)}.
##
## The coordinate transformation is computed using:
##
## @tex
## $$ \theta = \arctan \left ({y \over x} \right ) $$
## $$ \phi = \arctan \left ( {z \over {\sqrt{x^2+y^2}}} \right ) $$
## $$ r = \sqrt{x^2 + y^2 + z^2} $$
## @end tex
## @ifnottex
##
## @example
## @group
## @var{theta} = arctan (@var{y} / @var{x})
## @var{phi} = arctan (@var{z} / sqrt (@var{x}^2 + @var{y}^2))
## @var{r} = sqrt (@var{x}^2 + @var{y}^2 + @var{z}^2)
## @end group
## @end example
##
## @end ifnottex
##
## @c FIXME: Remove this note in Octave 9.1 (two releases after 7.1).
## Note: For @sc{matlab} compatibility, this function no longer returns a full
## coordinate matrix when called with a single return argument.
## @seealso{sph2cart, cart2pol, pol2cart}
## @end deftypefn

function [theta, phi, r] = cart2sph (x, y, z)

  if (nargin != 1 && nargin != 3)
    print_usage ();
  endif

  if (nargin == 1)
    if (! (isnumeric (x) && ismatrix (x)))
      error ("cart2sph: matrix input C must be a 2-D numeric array");
    elseif (columns (x) != 3 && numel (x) != 3)
      error ("cart2sph: matrix input C must be a 3-element vector or 3-column array");
    endif

    if (numel (x) == 3)
      z = x(3);
      y = x(2);
      x = x(1);
    else
      z = x(:,3);
      y = x(:,2);
      x = x(:,1);
    endif

  else
    if (! (isnumeric (x) && isnumeric (y) && isnumeric (z)))
      error ("cart2sph: X, Y, Z must be numeric arrays or scalars");
    endif
    [err, x, y, z] = common_size (x, y, z);
    if (err)
      error ("cart2sph: X, Y, Z must be the same size or scalars");
    endif
  endif

  theta = atan2 (y, x);
  phi = atan2 (z, sqrt (x .^ 2 + y .^ 2));
  r = sqrt (x .^ 2 + y .^ 2 + z .^ 2);

endfunction


%!test
%! x = [0, 1, 2];
%! y = [0, 1, 2];
%! z = [0, 1, 2];
%! [t, p, r] = cart2sph (x, y, z);
%! assert (t, [0, pi/4, pi/4], eps);
%! assert (p, [0, 1, 1]*atan (sqrt (0.5)), eps);
%! assert (r, [0, 1, 2]*sqrt (3), eps);

%!test
%! x = [0; 1; 2];
%! y = [0; 1; 2];
%! z = [0; 1; 2];
%! [t, p, r] = cart2sph (x, y, z);
%! assert (t, [0; pi/4; pi/4], eps);
%! assert (p, [0; 1; 1] * atan (sqrt (0.5)), eps);
%! assert (r, [0; 1; 2] * sqrt (3), eps);

%!test
%! x = 0;
%! y = [0, 1, 2];
%! z = [0, 1, 2];
%! [t, p, r] = cart2sph (x, y, z);
%! assert (t, [0, 1, 1] * pi/2, eps);
%! assert (p, [0, 1, 1] * pi/4, eps);
%! assert (r, [0, 1, 2] * sqrt (2), eps);

%!test
%! x = [0, 1, 2];
%! y = 0;
%! z = [0, 1, 2];
%! [t, p, r] = cart2sph (x, y, z);
%! assert (t, [0, 0, 0]);
%! assert (p, [0, 1, 1] * pi/4, eps);
%! assert (r, [0, 1, 2] * sqrt (2), eps);

%!test
%! x = [0, 1, 2];
%! y = [0, 1, 2];
%! z = 0;
%! [t, p, r] = cart2sph (x, y, z);
%! assert (t, [0, 1, 1] * pi/4, eps);
%! assert (p, [0, 0, 0]);
%! assert (r, [0, 1, 2] * sqrt (2), eps);

%!test
%! x = 0;
%! y = 0;
%! z = [0, 1, 2];
%! [t, p, r] = cart2sph (x, y, z);
%! assert (t, [0, 0, 0]);
%! assert (p, [0, 1, 1] * pi/2, eps);
%! assert (r, [0, 1, 2]);

%!test
%! C = [0, 0, 0; 1, 0, 1; 2, 0, 2];
%! [t, p, r] = cart2sph (C);
%! assert (t, [0; 0; 0]);
%! assert (p, [0; 1; 1] * pi/4, eps);
%! assert (r, [0; 1; 2] * sqrt (2), eps);

%!test
%! C = [0, 0, 0; 1, 0, 1; 2, 0, 2; 1, 0, 1];
%! [t, p, r] = cart2sph (C);
%! assert (t, [0; 0; 0; 0]);
%! assert (p, [0; 1; 1; 1] * pi/4, eps);
%! assert (r, [0; 1; 2; 1] * sqrt (2), eps);

%!test
%! [x, y, z] = meshgrid ([0, 1], [0, 1], [0, 1]);
%! [t, p, r] = cart2sph (x, y, z);
%! T(:, :, 1) = [0, 0; pi/2, pi/4];
%! T(:, :, 2) = T(:, :, 1);
%! P(:, :, 1) = zeros (2, 2);
%! P(:, :, 2) = [pi/2, pi/4; pi/4, acos(sqrt(2/3))];
%! R = sqrt (x .^ 2 + y .^ 2 + z .^ 2);
%! assert (t, T, eps);
%! assert (p, P, eps);
%! assert (r, R, eps);

## Test input validation
%!error <Invalid call> cart2sph ()
%!error <Invalid call> cart2sph (1,2)
%!error <matrix input C must be a 2-D numeric array> cart2sph ({1,2,3})
%!error <matrix input C must be a 2-D numeric array> cart2sph (ones (3,3,2))
%!error <matrix input C must be a 3-element> cart2sph ([1,2,3,4])
%!error <matrix input C must be a 3-element> cart2sph ([1,2,3,4; 1,2,3,4; 1,2,3,4])
%!error <must be numeric arrays or scalars> cart2sph ({1,2,3}, [1,2,3], [1,2,3])
%!error <must be numeric arrays or scalars> cart2sph ([1,2,3], {1,2,3}, [1,2,3])
%!error <must be numeric arrays or scalars> cart2sph ([1,2,3], [1,2,3], {1,2,3})
%!error <must be the same size or scalars> cart2sph ([1,2,3], [1,2,3], [1,2,3]')
%!error <must be the same size or scalars> cart2sph (ones (3,3,3), 1, ones (3,2,3))
%!error <must be the same size or scalars> cart2sph (ones (3,3,3), ones (3,2,3), 1)