view scripts/general/integral.m @ 31063:451fb63a10a0

update integral to call quadgk for 'ArrayValued' integrations (bug #62468) * integral.m: Modify integrator selection so that calls with ‘ArrayValued’ go to quadgk instead of quadv. Remove error checks for previously incompatible parameter combinations. Update docstring to remove mention of quadv, point 'ArrayValued' reference to quadgk, change returned error parameter description to match current behavior, and remove parameter incompatibility note. Add BIST to verify combined parameter functionality, and change BISTs checking quadv err parameter. * quadgk.m: Correct parameter name in docstring. * NEWS.8.md: Under General Improvements add note about quadgk now accepting 'ArrayValued' parameter and update integral improvement description of optional returned error parameter. Under Matlab Compatibility add note about integral now accepting all parameter combinations.
author Nicholas R. Jankowski <jankowski.nicholas@gmail.com>
date Thu, 02 Jun 2022 19:56:15 -0400
parents 7711b5e38ebc
children b390f662a150
line wrap: on
line source

########################################################################
##
## Copyright (C) 2017-2022 The Octave Project Developers
##
## See the file COPYRIGHT.md in the top-level directory of this
## distribution or <https://octave.org/copyright/>.
##
## This file is part of Octave.
##
## Octave is free software: you can redistribute it and/or modify it
## under the terms of the GNU General Public License as published by
## the Free Software Foundation, either version 3 of the License, or
## (at your option) any later version.
##
## Octave is distributed in the hope that it will be useful, but
## WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
## GNU General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with Octave; see the file COPYING.  If not, see
## <https://www.gnu.org/licenses/>.
##
########################################################################

## -*- texinfo -*-
## @deftypefn  {} {@var{q} =} integral (@var{f}, @var{a}, @var{b})
## @deftypefnx {} {@var{q} =} integral (@var{f}, @var{a}, @var{b}, @var{prop}, @var{val}, @dots{})
## @deftypefnx {} {[@var{q}, @var{err}] =} integral (@dots{})
##
## Numerically evaluate the integral of @var{f} from @var{a} to @var{b} using
## adaptive quadrature.
##
## @code{integral} is a wrapper for @code{quadcc} (general real-valued, scalar
## integrands and limits), and @code{quadgk} (integrals with specified
## integration paths and array-valued integrands) that is intended to provide
## @sc{matlab} compatibility.  More control of the numerical integration may be
## achievable by calling the various quadrature functions directly.
##
## @var{f} is a function handle, inline function, or string containing the name
## of the function to evaluate.  The function @var{f} must be vectorized and
## return a vector of output values when given a vector of input values.
##
## @var{a} and @var{b} are the lower and upper limits of integration.  Either
## or both limits may be infinite or contain weak end singularities.  If either
## or both limits are complex, @code{integral} will perform a straight line
## path integral.  Alternatively, a complex domain path can be specified using
## the @qcode{"Waypoints"} option (see below).
##
## Additional optional parameters can be specified using
## @qcode{"@var{property}", @var{value}} pairs.  Valid properties are:
##
## @table @code
## @item Waypoints
## Specifies points to be used in defining subintervals of the quadrature
## algorithm, or if @var{a}, @var{b}, or @var{waypoints} are complex then
## the quadrature is calculated as a contour integral along a piecewise
## continuous path.  For more detail, @pxref{XREFquadgk,,@code{quadgk}}.
##
## @item ArrayValued
## @code{integral} expects @var{f} to return a scalar value unless
## @var{arrayvalued} is specified as true.  This option will cause
## @code{integral} to perform the integration over the entire array and return
## @var{q} with the same dimensions as returned by @var{f}.  For more detail
## @pxref{XREFquadgk,,@code{quadgk}}.
##
## @item AbsTol
## Define the absolute error tolerance for the quadrature.  The default
## absolute tolerance is 1e-10 (1e-5 for single).
##
## @item RelTol
## Define the relative error tolerance for the quadrature.  The default
## relative tolerance is 1e-6 (1e-4 for single).
## @end table
##
## The optional output @var{err} contains the absolute error estimate used by
## the called integrator.
##
## Adaptive quadrature is used to minimize the estimate of error until the
## following is satisfied:
## @tex
## $$error \leq \max \left( AbsTol, RelTol\cdot\vert q\vert \right)$$
## @end tex
## @ifnottex
##
## @example
## @group
##   @var{error} <= max (@var{AbsTol}, @var{RelTol}*|@var{q}|).
## @end group
## @end example
##
## @end ifnottex
##
## Known @sc{matlab} incompatibilities:
##
## @enumerate
## @item
## If tolerances are left unspecified, and any integration limits or waypoints
## are of type @code{single}, then Octave's integral functions automatically
## reduce the default absolute and relative error tolerances as specified
## above.  If tighter tolerances are desired they must be specified.
## @sc{matlab} leaves the tighter tolerances appropriate for @code{double}
## inputs in place regardless of the class of the integration limits.
## @end enumerate
##
## @seealso{integral2, integral3, quad, quadgk, quadv, quadl, quadcc, trapz,
##          dblquad, triplequad}
## @end deftypefn

function [q, err] = integral (f, a, b, varargin)

  if (nargin < 3 || (mod (nargin, 2) == 0))
    print_usage ();
  endif

  error_flag = (nargout == 2);

  ## quadcc can't handle complex limits or integrands, but quadgk can.
  ## Check for simple cases of complex limits and integrand.
  f_is_complex = false;
  if (iscomplex (a) || iscomplex (b))
    f_is_complex = true;
  elseif (iscomplex (feval (f, a)) || iscomplex (feval (f, b)))
    f_is_complex = true;
  endif

  if (nargin == 3)
    ## Pass the simplest case directly to general integrator.
    ## Let quadcc function handle input checks on function and limits.
    if (! f_is_complex)
      try
        if (error_flag)
          [q, err] = quadcc (f, a, b);
        else
          q = quadcc (f, a, b);
        endif
      catch quaderror
        if (strcmp (quaderror.message,
                "quadcc: integrand F must return a single, real-valued vector"))
          if (error_flag)
            [q, err] = quadgk (f, a, b);
          else
            q = quadgk (f, a, b);
          endif
        else
          error (quaderror.message);
        endif
      end_try_catch

    else
      ## Complex-valued integral
      if (error_flag)
        [q, err] = quadgk (f, a, b);
      else
        q = quadgk (f, a, b);
      endif
    endif

  else
    ## Parse options to determine how to call integrator.
    abstol = [];
    reltol = [];
    waypoints = [];
    arrayvalued = false;
    use_quadgk = false;

    idx = 1;
    while (idx < nargin - 3)
      prop = varargin{idx++};
      if (! ischar (prop))
        error ("integral: property PROP must be a string");
      endif

      switch (tolower (prop))
        case "reltol"
          reltol = varargin{idx++};
        case "abstol"
          abstol = varargin{idx++};
        case "waypoints"
          waypoints = varargin{idx++}(:);
          use_quadgk = true;
        case "arrayvalued"
          arrayvalued = varargin{idx++};
          use_quadgk = true;
        otherwise
          error ("integral: unknown property '%s'", prop);
      endswitch
    endwhile

    issingle = (isa (a, "single") || isa (b, "single")
                || isa (waypoints, "single"));

    if (isempty (abstol))
      abstol = ifelse (issingle, 1e-5, 1e-10);
    endif
    if (isempty (reltol))
      reltol = ifelse (issingle, 1e-4, 1e-6);
    endif

    if (use_quadgk)
      ## Array valued functions or waypoint definitions require quadgk
      ## no need to test for complex components
      if (error_flag)
        [q, err] = quadgk (f, a, b, "AbsTol", abstol, "RelTol", reltol,
                            "WayPoints", waypoints, "ArrayValued", arrayvalued);
      else
        q = quadgk (f, a, b, "AbsTol", abstol, "RelTol", reltol,
                            "WayPoints", waypoints, "ArrayValued", arrayvalued);
      endif

    else
      ## otherwise try quadcc first, switch to quadgk if complex test fails
      if (! f_is_complex)
        try
          if (error_flag)
            [q, err] = quadcc (f, a, b, [abstol, reltol]);
          else
            q = quadcc (f, a, b, [abstol, reltol]);
          endif
        catch quaderror
          if (strcmp (quaderror.message,
                "quadcc: integrand F must return a single, real-valued vector"))
            if (error_flag)
              [q, err] = quadgk (f, a, b, "AbsTol", abstol, "RelTol", reltol);
            else
              q = quadgk (f, a, b, "AbsTol", abstol, "RelTol", reltol);
            endif
          else
            error (quaderror.message);
          endif
        end_try_catch
      else
        ## Complex-valued integral
        if (error_flag)
          [q, err] = quadgk (f, a, b, "AbsTol", abstol, "RelTol", reltol);
        else
          q = quadgk (f, a, b, "AbsTol", abstol, "RelTol", reltol);
        endif
      endif
    endif
  endif

endfunction


## Matlab compatibility tests
%!test
%! f = @(x) exp (-x.^2) .* log (x).^2;
%! emgamma = 0.57721566490153286;
%! exact = (sqrt (pi)*(8*log (2)^2+8*emgamma*log (2)+pi^2+2*emgamma^2))/16;
%! assert (integral (f, 0, Inf), exact, -1e-6);
%! assert (integral (f, 0, Inf, "RelTol", 1e-12), exact, -1e-12);

%!test  # with parameter
%! f = @(x, c) 1 ./ (x.^3 - 2*x - c);
%! assert (integral (@(x) f(x,5), 0, 2), -0.4605015338467329, 1e-10);

%!test  # with tolerances
%! f = @(x) log (x);
%! assert (integral (@(x) f(x), 0, 1, "AbsTol", 1e-6), -1, 1e-6);

%!test  # waypoints
%! f = @(x) 1./(2.*x-1);
%! assert (integral (f, 0, 0, "Waypoints", [1+1i, 1-1i]), -pi*1i, 1e-10);

%!test  # an array-valued function
%! f = @(x) sin ((1:5)*x);
%! assert (integral (f, 0, 1, "ArrayValued", true), 1./[1:5]-cos(1:5)./[1:5],
%!         1e-10);

%!test  # test single input/output
%! assert (integral (@sin, 0, 1), cos (0)-cos (1), 1e-10);
%! assert (class (integral (@sin, single (0), 1)), "single");
%! assert (class (integral (@sin, 0, single (1))), "single");
%! assert (class (integral (@sin, single (0), single (1))), "single");
%! assert (integral (@sin, 0, 1, "Waypoints", 0.5), cos (0)-cos (1), 1e-10);
%! assert (class (integral (@sin, 0, 1, "Waypoints", single (0.5))), "single");
%! assert (class (integral (@sin, single (0), 1, "Waypoints", 0.5)), "single");
%! assert (class (integral (@sin, 0, single (1), "Waypoints", 0.5)), "single");

%!test  # test complex argument handling
%! f = @(x) round (exp (i*x));
%! assert (integral (f, 0, pi), quadgk (f, 0, pi), eps);
%! assert (integral (f, -1, 1), 2, 5*eps);
%! assert (integral (@sin, -i, i), 0, eps);
%! assert (1.5 * integral (@sqrt, -1, 0), i, eps);

%!test
%! f = @(x) x.^5 .* exp (-x) .* sin (x);
%! assert (integral (f, 0, inf, "RelTol", 1e-8, "AbsTol", 1e-12), -15, -1e-8);

## tests from quadcc
%!assert (integral (@sin, -pi, pi), 0, 1e-10)
%!assert (integral (inline ("sin"), -pi, pi), 0, 1e-10)
%!assert (integral ("sin", -pi, pi), 0, 1e-10)
%!assert (integral (@sin, -pi, 0), -2, 1e-10)
%!assert (integral (@sin, 0, pi), 2, 1e-10)
%!assert (integral (@(x) 1./(sqrt (x).*(x+1)), 0, Inf), pi, -1e-6)
%!assert (integral (@(x) 1./(sqrt (x).*(x+1)), 0, Inf,
%!                  "AbsTol", 0, "RelTol", 1e-8),
%!        pi, -1e-8)
%!assert (integral (@(x) exp (-x .^ 2), -Inf, Inf), sqrt (pi), 1e-10)
%!assert (integral (@(x) exp (-x .^ 2), -Inf, 0), sqrt (pi)/2, 1e-10)

## tests from quadgk
%!assert (integral (@sin,-pi,pi, "WayPoints",0, "AbsTol",1e-6, "RelTol",1e-3),
%!        0, 1e-6)
%!assert (integral (@(x) abs (1 - x.^2), 0, 2, "Waypoints", 1), 2, 1e-10)
%!assert (integral (@(z) log (z),1+1i,1+1i, "WayPoints", [1-1i, -1,-1i, -1+1i]),
%!        complex (0, pi), 1e-10)

## Test vector-valued functions
%!assert (integral (@(x) [(sin (x)), (sin (2*x))], 0, pi, "ArrayValued", 1),
%!        [2, 0], 1e-10)

## Test matrix-valued functions
%!assert (integral (@(x) [x,x,x; x,exp(x),x; x,x,x], 0, 1, "ArrayValued", 1),
%!                    [0.5,0.5,0.5; 0.5,(exp (1) - 1),0.5; 0.5,0.5,0.5], 1e-10);

## Test combined parameters
%!assert (integral (@(x) [sin(x), cos(x)], 0, pi, "ArrayValued", 1,
%!                   "Waypoints", [0.5]), [2, 0], eps);

##test 2nd output
%!test <*62412>
%! [~, err] = integral (@(x) ones (size (x)), 0, 1);  # quadcc
%! assert (err, 0, 5*eps);  # err ~3e-16
%! [~, err] = integral (@(x) ones (size (x)), 0, 1, "waypoints", 1);  # quadgk
%! assert (err, 0, 1000*eps);  # err ~7e-14
%! [~, err] = integral (@(x) ones (size (x)), 0, 1, "arrayvalued", true);  # quadgk
%! assert (err, 0, 1000*eps);  # err ~7e-14

## Test input validation
%!error integral (@sin)
%!error integral (@sin, 0)
%!error integral (@sin, 0, 1, 1e-6, true, 4)
%!error integral (@sin, 0, 1, "DummyArg")
%!error <property PROP must be a string> integral (@sin, 0, 1, 2, 3)
%!error <unknown property 'foo'> integral (@sin, 0, 1, "foo", 3)
%!error integral (@sin, 0, 1, "AbsTol", ones (2,2))
%!error integral (@sin, 0, 1, "AbsTol", -1)
%!error integral (@sin, 0, 1, "RelTol", ones (2,2))
%!error integral (@sin, 0, 1, "RelTol", -1)