view scripts/general/quadl.m @ 31063:451fb63a10a0

update integral to call quadgk for 'ArrayValued' integrations (bug #62468) * integral.m: Modify integrator selection so that calls with ‘ArrayValued’ go to quadgk instead of quadv. Remove error checks for previously incompatible parameter combinations. Update docstring to remove mention of quadv, point 'ArrayValued' reference to quadgk, change returned error parameter description to match current behavior, and remove parameter incompatibility note. Add BIST to verify combined parameter functionality, and change BISTs checking quadv err parameter. * quadgk.m: Correct parameter name in docstring. * NEWS.8.md: Under General Improvements add note about quadgk now accepting 'ArrayValued' parameter and update integral improvement description of optional returned error parameter. Under Matlab Compatibility add note about integral now accepting all parameter combinations.
author Nicholas R. Jankowski <jankowski.nicholas@gmail.com>
date Thu, 02 Jun 2022 19:56:15 -0400
parents e1788b1a315f
children 597f3ee61a48
line wrap: on
line source

########################################################################
##
## Copyright (C) 1998-2022 The Octave Project Developers
##
## See the file COPYRIGHT.md in the top-level directory of this
## distribution or <https://octave.org/copyright/>.
##
## This file is part of Octave.
##
## Octave is free software: you can redistribute it and/or modify it
## under the terms of the GNU General Public License as published by
## the Free Software Foundation, either version 3 of the License, or
## (at your option) any later version.
##
## Octave is distributed in the hope that it will be useful, but
## WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
## GNU General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with Octave; see the file COPYING.  If not, see
## <https://www.gnu.org/licenses/>.
##
########################################################################

## -*- texinfo -*-
## @deftypefn  {} {@var{q} =} quadl (@var{f}, @var{a}, @var{b})
## @deftypefnx {} {@var{q} =} quadl (@var{f}, @var{a}, @var{b}, @var{tol})
## @deftypefnx {} {@var{q} =} quadl (@var{f}, @var{a}, @var{b}, @var{tol}, @var{trace})
## @deftypefnx {} {@var{q} =} quadl (@var{f}, @var{a}, @var{b}, @var{tol}, @var{trace}, @var{p1}, @var{p2}, @dots{})
## @deftypefnx {} {[@var{q}, @var{nfev}] =} quadl (@dots{})
##
## Numerically evaluate the integral of @var{f} from @var{a} to @var{b} using
## an adaptive @nospell{Lobatto} rule.
##
## @var{f} is a function handle, inline function, or string containing the name
## of the function to evaluate.  The function @var{f} must be vectorized and
## return a vector of output values when given a vector of input values.
##
## @var{a} and @var{b} are the lower and upper limits of integration.  Both
## limits must be finite.
##
## The optional argument @var{tol} defines the absolute tolerance with which
## to perform the integration.  The default value is 1e-6.
##
## The algorithm used by @code{quadl} involves recursively subdividing the
## integration interval.  If @var{trace} is defined then for each subinterval
## display: (1) the total number of function evaluations, (2) the left end of
## the subinterval, (3) the length of the subinterval, (4) the approximation of
## the integral over the subinterval.
##
## Additional arguments @var{p1}, etc., are passed directly to the function
## @var{f}.  To use default values for @var{tol} and @var{trace}, one may pass
## empty matrices ([]).
##
## The result of the integration is returned in @var{q}.
##
## The optional output @var{nfev} indicates the total number of function
## evaluations performed.
##
## Reference: @nospell{W. Gander and W. Gautschi}, @cite{Adaptive Quadrature -
## Revisited}, BIT Vol.@: 40, No.@: 1, March 2000, pp.@: 84--101.
## @url{https://www.inf.ethz.ch/personal/gander/}
## @seealso{quad, quadv, quadgk, quadcc, trapz, dblquad, triplequad, integral,
##          integral2, integral3}
## @end deftypefn

## Original Author: Walter Gautschi
## Date: 08/03/98
## Reference: Gander, Computermathematik, Birkhaeuser, 1992.

## 2003-08-05 Shai Ayal
##   * permission from author to release as GPL

function [q, nfev] = quadl (f, a, b, tol = [], trace = false, varargin)

  if (nargin < 3)
    print_usage ();
  endif

  if (isa (a, "single") || isa (b, "single"))
    eps = eps ("single");
  else
    eps = eps ("double");
  endif
  if (isempty (tol))
    tol = 1e-6;
  elseif (! isscalar (tol) || tol < 0)
    error ("quadl: TOL must be a scalar >=0");
  elseif (tol < eps)
    warning ("quadl: TOL specified is smaller than machine precision, using %g",
                                                                           tol);
    tol = eps;
  endif
  if (isempty (trace))
    trace = false;
  endif

  y = feval (f, [a, b], varargin{:});
  nfev = 1;

  fa = y(1);
  fb = y(2);

  h = b - a;

  [q, nfev, hmin] = adaptlobstp (f, a, b, fa, fb, Inf, nfev, abs (h),
                                 tol, trace, varargin{:});

  if (nfev > 10_000)
    warning ("quadl: maximum iteration count reached -- possible singular integral");
  elseif (any (! isfinite (q(:))))
    warning ("quadl: infinite or NaN function evaluations were returned");
  elseif (hmin < (b - a) * eps)
    warning ("quadl: minimum step size reached -- possible singular integral");
  endif

endfunction

function [q, nfev, hmin] = adaptlobstp (f, a, b, fa, fb, q0, nfev, hmin,
                                        tol, trace, varargin)

  persistent alpha = sqrt (2/3);
  persistent beta = 1 / sqrt (5);

  if (nfev > 10_000)
    q = q0;
    return;
  endif

  h = (b - a) / 2;
  m = (a + b) / 2;
  mll = m - alpha*h;
  ml  = m - beta*h;
  mr  = m + beta*h;
  mrr = m + alpha*h;
  x = [mll, ml, m, mr, mrr];
  y = feval (f, x, varargin{:});
  nfev += 1;
  fmll = y(1);
  fml  = y(2);
  fm   = y(3);
  fmr  = y(4);
  fmrr = y(5);
  i2 = (h/6)*(fa + fb + 5*(fml+fmr));
  i1 = (h/1470)*(77*(fa+fb) + 432*(fmll+fmrr) + 625*(fml+fmr) + 672*fm);

  if (abs (b - a) < hmin)
    hmin = abs (b - a);
  endif

  if (trace)
    disp ([nfev, a, b-a, i1]);
  endif

  ## Force at least one adaptive step (nfev > 2 test).
  if ((abs (i1-i2) < tol || mll <= a || b <= mrr) && nfev > 2)
    q = i1;
  else
    q = zeros (6, 1, class (x));
    [q(1), nfev, hmin] = adaptlobstp (f, a  , mll, fa  , fmll, q0/6, nfev, hmin,
                                      tol, trace, varargin{:});
    [q(2), nfev, hmin] = adaptlobstp (f, mll, ml , fmll, fml , q0/6, nfev, hmin,
                                      tol, trace, varargin{:});
    [q(3), nfev, hmin] = adaptlobstp (f, ml , m  , fml , fm  , q0/6, nfev, hmin,
                                      tol, trace, varargin{:});
    [q(4), nfev, hmin] = adaptlobstp (f, m  , mr , fm  , fmr , q0/6, nfev, hmin,
                                      tol, trace, varargin{:});
    [q(5), nfev, hmin] = adaptlobstp (f, mr , mrr, fmr , fmrr, q0/6, nfev, hmin,
                                      tol, trace, varargin{:});
    [q(6), nfev, hmin] = adaptlobstp (f, mrr, b  , fmrr, fb  , q0/6, nfev, hmin,
                                      tol, trace, varargin{:});
    q = sum (q);
  endif

endfunction


## basic functionality
%!assert (quadl (@(x) sin (x), 0, pi), 2, 1e-6)

## the values here are very high so it may be unavoidable that this fails
%!assert (quadl (@(x) sin (3*x).*cosh (x).*sinh (x),10,15, 1e-3),
%!        2.588424538641647e+10, 1e-3)

## extra parameters
%!assert (quadl (@(x,a,b) sin (a + b*x), 0, 1, [], [], 2, 3),
%!        cos (2)/3 - cos (5)/3, 1e-6)

## test different tolerances.
%!test
%! [q, nfev1] = quadl (@(x) sin (2 + 3*x).^2, 0, 10, 0.5, []);
%! assert (q, (60 + sin (4) - sin (64))/12, 0.5);
%! [q, nfev2] = quadl (@(x) sin (2 + 3*x).^2, 0, 10, 0.1, []);
%! assert (q, (60 + sin (4) - sin (64))/12, 0.1);
%! assert (nfev2 > nfev1);

%!test  # test single input/output
%! assert (class (quadl (@sin, 0, 1)), "double");
%! assert (class (quadl (@sin, single (0), 1)), "single");
%! assert (class (quadl (@sin, 0, single (1))), "single");

## Test input validation
%!error <Invalid call> quadl ()
%!error <Invalid call> quadl (@sin)
%!error <Invalid call> quadl (@sin,1)
%!error <TOL must be a scalar> quadl (@sin,0,1, ones (2,2))
%!error <TOL must be .* .=0> quadl (@sin,0,1, -1)