view scripts/general/rat.m @ 31063:451fb63a10a0

update integral to call quadgk for 'ArrayValued' integrations (bug #62468) * integral.m: Modify integrator selection so that calls with ‘ArrayValued’ go to quadgk instead of quadv. Remove error checks for previously incompatible parameter combinations. Update docstring to remove mention of quadv, point 'ArrayValued' reference to quadgk, change returned error parameter description to match current behavior, and remove parameter incompatibility note. Add BIST to verify combined parameter functionality, and change BISTs checking quadv err parameter. * quadgk.m: Correct parameter name in docstring. * NEWS.8.md: Under General Improvements add note about quadgk now accepting 'ArrayValued' parameter and update integral improvement description of optional returned error parameter. Under Matlab Compatibility add note about integral now accepting all parameter combinations.
author Nicholas R. Jankowski <jankowski.nicholas@gmail.com>
date Thu, 02 Jun 2022 19:56:15 -0400
parents 796f54d4ddbf
children 597f3ee61a48
line wrap: on
line source

########################################################################
##
## Copyright (C) 2001-2022 The Octave Project Developers
##
## See the file COPYRIGHT.md in the top-level directory of this
## distribution or <https://octave.org/copyright/>.
##
## This file is part of Octave.
##
## Octave is free software: you can redistribute it and/or modify it
## under the terms of the GNU General Public License as published by
## the Free Software Foundation, either version 3 of the License, or
## (at your option) any later version.
##
## Octave is distributed in the hope that it will be useful, but
## WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
## GNU General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with Octave; see the file COPYING.  If not, see
## <https://www.gnu.org/licenses/>.
##
########################################################################

## -*- texinfo -*-
## @deftypefn  {} {@var{s} =} rat (@var{x})
## @deftypefnx {} {@var{s} =} rat (@var{x}, @var{tol})
## @deftypefnx {} {[@var{n}, @var{d}] =} rat (@dots{})
##
## Find a rational approximation of @var{x} to within the tolerance defined by
## @var{tol}.
##
## If unspecified, the default tolerance is @code{1e-6 * norm (@var{x}(:), 1)}.
##
## When called with one output argument, return a string containing a
## continued fraction expansion (multiple terms).
##
## When called with two output arguments, return numeric matrices for the
## numerator and denominator of a fractional representation of @var{x} such
## that @code{@var{x} = @var{n} ./ @var{d}}.
##
## For example:
##
## @example
## @group
## s = rat (pi)
## @result{} s = 3 + 1/(7 + 1/16)
##
## [n, d] = rat (pi)
## @result{} n =  355
## @result{} d =  113
##
## n / d - pi
## @result{} 0.00000026676
## @end group
## @end example
##
## Programming Note: With one output @code{rat} produces a string which is a
## continued fraction expansion.  To produce a string which is a simple
## fraction (one numerator, one denominator) use @code{rats}.
##
## @seealso{rats, format}
## @end deftypefn

function [n, d] = rat (x, tol)

  if (nargin < 1)
    print_usage ();
  endif

  if (! isfloat (x))
    error ("rat: X must be a single or double array");
  endif

  ## FIXME: This test should be removed when complex support is added.
  ##        See bug #55198.
  if (iscomplex (x))
    error ("rat: X must be a real, not complex, array");
  endif

  y = x(:);

  ## Replace Inf with 0 while calculating ratios.
  inf_idx = isinf (x);
  y(inf_idx(:)) = 0;

  if (nargin == 1)
    ## default norm
    tol = 1e-6 * norm (y, 1);
  else
    if (! (isscalar (tol) && isnumeric (tol) && tol > 0))
      error ("rat: TOL must be a numeric scalar > 0");
    endif
  endif

  ## First step in the approximation is the integer portion

  ## First element in the continued fraction.
  n = round (y);
  d = ones (size (y));
  frac = y - n;
  lastn = ones (size (y));
  lastd = zeros (size (y));

  nsz = numel (y);
  steps = zeros ([nsz, 0]);

  ## Grab new factors until all continued fractions converge.
  while (1)
    ## Determine which fractions have not yet converged.
    idx = find (y != 0 & abs (y - n./d) >= tol);
    if (isempty (idx))
      if (isempty (steps))
        steps = NaN (nsz, 1);
      endif
      break;
    endif

    ## Grab the next step in the continued fraction.
    flip = 1 ./ frac(idx);
    ## Next element in the continued fraction.
    step = round (flip);

    if (nargout < 2)
      tsteps = NaN (nsz, 1);
      tsteps(idx) = step;
      steps = [steps, tsteps];
    endif

    frac(idx) = flip - step;

    ## Update the numerator/denominator.
    savedn = n;
    savedd = d;
    n(idx) = n(idx).*step + lastn(idx);
    d(idx) = d(idx).*step + lastd(idx);
    lastn = savedn;
    lastd = savedd;
  endwhile

  if (nargout <= 1)
    ## string output
    n = "";
    nsteps = columns (steps);
    ## Loop over all values in array
    for i = 1:nsz

      if (inf_idx(i))
        s = ifelse (x(i) > 0, "Inf", "-Inf");
      elseif (y(i) == 0)
        s = "0";
      else
        ## Create partial fraction expansion of one value
        s = [int2str(y(i)), " "];
        j = 1;

        while (true)
          step = steps(i, j++);
          if (isnan (step))
            break;
          endif
          if (j > nsteps || isnan (steps(i, j)))
            if (step < 0)
              s = [s(1:end-1), " + 1/(", int2str(step), ")"];
            else
              s = [s(1:end-1), " + 1/", int2str(step)];
            endif
            break;
          else
            s = [s(1:end-1), " + 1/(", int2str(step), ")"];
          endif
        endwhile
        s = [s, repmat(")", 1, j-2)];
      endif

      ## Append result to output
      n_nc = columns (n);
      s_nc = columns (s);
      if (n_nc > s_nc)
        s(:, s_nc+1:n_nc) = " ";
      elseif (s_nc > n_nc && n_nc != 0)
        n(:, n_nc+1:s_nc) = " ";
      endif
      n = cat (1, n, s);
    endfor
  else
    ## numerator, denominator output

    ## Move the minus sign to the numerator.
    n .*= sign (d);
    d = abs (d);

    ## Return the same shape as the input.
    n = reshape (n, size (x));
    d = reshape (d, size (x));

    ## Use 1/0 for Inf.
    n(inf_idx) = sign (x(inf_idx));
    d(inf_idx) = 0;
  endif

endfunction


%!assert (rat (pi), "3 + 1/(7 + 1/16)")
%!assert (rat (pi, 1e-2), "3 + 1/7")
## Test exceptional values
%!assert (rat (0), "0")
%!assert (rat (Inf), "Inf")
%!assert (rat (-Inf), "-Inf")

%!test
%! [n, d] = rat ([0.5, 0.3, 1/3]);
%! assert (n, [1, 3, 1]);
%! assert (d, [2, 10, 3]);
## Test exceptional values
%!test
%! [n, d] = rat ([Inf, 0, -Inf]);
%! assert (n, [1, 0, -1]);
%! assert (d, [0, 1, 0]);

%!assert <*43374> (eval (rat (0.75)), [0.75])

## Test input validation
%!error <Invalid call> rat ()
%!error <X must be a single or double array> rat (int8 (3))
%!error <X must be a real, not complex, array> rat (1+1i)
%!error <TOL must be a numeric scalar> rat (1, "a")
%!error <TOL must be a numeric scalar> rat (1, [1 2])
%!error <TOL must be a numeric scalar . 0> rat (1, -1)