view scripts/general/repmat.m @ 31063:451fb63a10a0

update integral to call quadgk for 'ArrayValued' integrations (bug #62468) * integral.m: Modify integrator selection so that calls with ‘ArrayValued’ go to quadgk instead of quadv. Remove error checks for previously incompatible parameter combinations. Update docstring to remove mention of quadv, point 'ArrayValued' reference to quadgk, change returned error parameter description to match current behavior, and remove parameter incompatibility note. Add BIST to verify combined parameter functionality, and change BISTs checking quadv err parameter. * quadgk.m: Correct parameter name in docstring. * NEWS.8.md: Under General Improvements add note about quadgk now accepting 'ArrayValued' parameter and update integral improvement description of optional returned error parameter. Under Matlab Compatibility add note about integral now accepting all parameter combinations.
author Nicholas R. Jankowski <jankowski.nicholas@gmail.com>
date Thu, 02 Jun 2022 19:56:15 -0400
parents 5d3faba0342e
children 597f3ee61a48
line wrap: on
line source

########################################################################
##
## Copyright (C) 2000-2022 The Octave Project Developers
##
## See the file COPYRIGHT.md in the top-level directory of this
## distribution or <https://octave.org/copyright/>.
##
## This file is part of Octave.
##
## Octave is free software: you can redistribute it and/or modify it
## under the terms of the GNU General Public License as published by
## the Free Software Foundation, either version 3 of the License, or
## (at your option) any later version.
##
## Octave is distributed in the hope that it will be useful, but
## WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
## GNU General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with Octave; see the file COPYING.  If not, see
## <https://www.gnu.org/licenses/>.
##
########################################################################

## -*- texinfo -*-
## @deftypefn  {} {@var{B} =} repmat (@var{A}, @var{m})
## @deftypefnx {} {@var{B} =} repmat (@var{A}, @var{m}, @var{n})
## @deftypefnx {} {@var{B} =} repmat (@var{A}, @var{m}, @var{n}, @var{p} @dots{})
## @deftypefnx {} {@var{B} =} repmat (@var{A}, [@var{m} @var{n}])
## @deftypefnx {} {@var{B} =} repmat (@var{A}, [@var{m} @var{n} @var{p} @dots{}])
## Repeat matrix or N-D array.
##
## Form a block matrix of size @var{m} by @var{n}, with a copy of matrix
## @var{A} as each element.
##
## If @var{n} is not specified, form an @var{m} by @var{m} block matrix.  For
## copying along more than two dimensions, specify the number of times to copy
## across each dimension @var{m}, @var{n}, @var{p}, @dots{}, in a vector in the
## second argument.
##
## @seealso{bsxfun, kron, repelems}
## @end deftypefn

function B = repmat (A, m, varargin)

  if (nargin < 2)
    print_usage ();
  endif

  if (nargin == 3)
    n = varargin{1};
    if (! isempty (m) && isempty (n))
      m = m(:).';
      n = 1;
    elseif (isempty (m) && ! isempty (n))
      m = n(:).';
      n = 1;
    elseif (isempty (m) && isempty (n))
      m = n = 1;
    else
      if (all (size (m) > 1))
        m = m(:,1);
        if (numel (m) < 3)
          n = n(end);
        else
          n = [];
        endif
      endif
      if (all (size (n) > 1))
        n = n(:,1);
      endif
      m = m(:).';
      n = n(:).';
    endif
  else
    if (nargin > 3)
      ## input check for m and varargin
      if (isscalar (m) && all (cellfun ("numel", varargin) == 1))
        m = [m varargin{:}];
        n = [];
      else
        error ("repmat: all input arguments must be scalar");
      endif
    elseif (isempty (m))
      m = n = 1;
    elseif (isscalar (m))
      n = m;
    elseif (ndims (m) > 2)
      error ("repmat: M has more than 2 dimensions");
    elseif (all (size (m) > 1))
      m = m(:,1).';
      n = [];
    else
      m = m(:).';
      n = [];
    endif
  endif
  idx = [m, n];

  if (all (idx < 0))
    error ("repmat: invalid dimensions");
  else
    idx = max (idx, 0);
  endif

  if (numel (A) == 1)
    ## optimize the scalar fill case.
    if (any (idx == 0))
      B = resize (A, idx);
    else
      B(1:prod (idx)) = A;
      B = reshape (B, idx);
    endif
  elseif (ndims (A) == 2 && length (idx) < 3)
    if (issparse (A))
      B = kron (ones (idx), A);
    else
      ## indexing is now faster, so we use it rather than kron.
      m = rows (A); n = columns (A);
      p = idx(1); q = idx(2);
      B = reshape (A, m, 1, n, 1);
      B = B(:, ones (1, p), :, ones (1, q));
      B = reshape (B, m*p, n*q);
    endif
  else
    aidx = size (A);
    ## ensure matching size
    idx(end+1:length (aidx)) = 1;
    aidx(end+1:length (idx)) = 1;
    ## create subscript array
    cidx = cell (2, length (aidx));
    for i = 1:length (aidx)
      cidx{1,i} = ':';
      cidx{2,i} = ones (1, idx (i));
    endfor
    aaidx = aidx;
    ## add singleton dims
    aaidx(2,:) = 1;
    A = reshape (A, aaidx(:));
    B = reshape (A (cidx{:}), idx .* aidx);
  endif

endfunction


## Tests for ML compatibility
%!shared x
%! x = [1 2 3];
%!assert (repmat (x, [3, 1]), repmat (x, 3, []))
%!assert (repmat (x, [3, 1]), repmat (x, [], 3))
%!assert (repmat (x, [1, 3]), repmat (x, [], [1, 3]))
%!assert (repmat (x, [1, 3]), repmat (x, [1, 3], []))
%!assert (repmat (x, [1 3]), repmat (x, [1 3; 3 3]))
%!assert (repmat (x, [1 1 2]), repmat (x, [1 1; 1 3; 2 1]))
%!assert (repmat (x, [1 3; 1 3], [1; 3]), repmat (x, [1 1 3]))
%!assert (repmat (x, [1 1], 4), repmat (x, [1 3; 1 3], [1; 4]))
%!assert (repmat (x, [1 1], 4), repmat (x, [1 3; 1 3], [1 2; 3 4]))
%!assert (repmat (x, [1 1], 4), repmat (x, [1 1 4]))
%!assert (repmat (x, [1 1], 4), repmat (x, 1, [1 4]))

## Test various methods of providing size parameters
%!shared x
%! x = [1 2;3 4];
%!assert (repmat (x, [1 1]), repmat (x, 1))
%!assert (repmat (x, [3 3]), repmat (x, 3))
%!assert (repmat (x, [1 1]), repmat (x, 1, 1))
%!assert (repmat (x, [1 3]), repmat (x, 1, 3))
%!assert (repmat (x, [3 1]), repmat (x, 3, 1))
%!assert (repmat (x, [3 3]), repmat (x, 3, 3))
%!assert (repmat (pi, [1,2,3,4]), repmat (pi, 1,2,3,4))

## Tests for numel==1 case:
%!shared x, r
%! x = [ 65 ];
%! r = kron (ones (2,2), x);
%!assert (r, repmat (x, [2 2]))
%!assert (char (r), repmat (char (x), [2 2]))
%!assert (int8 (r), repmat (int8 (x), [2 2]))

## Tests for ndims==2 case:
%!shared x, r
%! x = [ 65 66 67 ];
%! r = kron (ones (2,2), x);
%!assert (r, repmat (x, [2 2]))
%!assert (char (r), repmat (char (x), [2 2]))
%!assert (int8 (r), repmat (int8 (x), [2 2]))

## Tests for dim>2 case:
%!shared x, r
%! x = [ 65 66 67 ];
%! r = kron (ones (2,2), x);
%! r(:,:,2) = r(:,:,1);
%!assert (r, repmat (x, [2 2 2]))
%!assert (char (r), repmat (char (x), [2 2 2]))
%!assert (int8 (r), repmat (int8 (x), [2 2 2]))

## Test that sparsity is kept
%!assert (sparse (4,4), repmat (sparse (2,2),[2 2]))

%!assert (size (repmat (".", -1, 1)), [0, 1])
%!assert (size (repmat (".", 1, -1)), [1, 0])

%!assert (size (repmat (1, [1, 0])), [1, 0])
%!assert (size (repmat (1, [5, 0])), [5, 0])
%!assert (size (repmat (1, [0, 1])), [0, 1])
%!assert (size (repmat (1, [0, 5])), [0, 5])

%!assert (size (repmat (ones (0, 3), [2 3])), [0 9])
%!assert (size (repmat (ones (0, 0, 3), [2 3])), [0 0 3])

%!shared x
%! x = struct ("a", [], "b", []);
%!assert (size (repmat (x, [1, 0])), [1, 0])
%!assert (size (repmat (x, [5, 0])), [5, 0])
%!assert (size (repmat (x, [0, 1])), [0, 1])
%!assert (size (repmat (x, [0, 5])), [0, 5])

%!assert (size (repmat ({1}, [1, 0])), [1, 0])
%!assert (size (repmat ({1}, [5, 0])), [5, 0])
%!assert (size (repmat ({1}, [0, 1])), [0, 1])
%!assert (size (repmat ({1}, [0, 5])), [0, 5])

%!error size (repmat (".", -1, -1))