view scripts/general/rot90.m @ 31063:451fb63a10a0

update integral to call quadgk for 'ArrayValued' integrations (bug #62468) * integral.m: Modify integrator selection so that calls with ‘ArrayValued’ go to quadgk instead of quadv. Remove error checks for previously incompatible parameter combinations. Update docstring to remove mention of quadv, point 'ArrayValued' reference to quadgk, change returned error parameter description to match current behavior, and remove parameter incompatibility note. Add BIST to verify combined parameter functionality, and change BISTs checking quadv err parameter. * quadgk.m: Correct parameter name in docstring. * NEWS.8.md: Under General Improvements add note about quadgk now accepting 'ArrayValued' parameter and update integral improvement description of optional returned error parameter. Under Matlab Compatibility add note about integral now accepting all parameter combinations.
author Nicholas R. Jankowski <jankowski.nicholas@gmail.com>
date Thu, 02 Jun 2022 19:56:15 -0400
parents 5d3faba0342e
children 597f3ee61a48
line wrap: on
line source

########################################################################
##
## Copyright (C) 1993-2022 The Octave Project Developers
##
## See the file COPYRIGHT.md in the top-level directory of this
## distribution or <https://octave.org/copyright/>.
##
## This file is part of Octave.
##
## Octave is free software: you can redistribute it and/or modify it
## under the terms of the GNU General Public License as published by
## the Free Software Foundation, either version 3 of the License, or
## (at your option) any later version.
##
## Octave is distributed in the hope that it will be useful, but
## WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
## GNU General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with Octave; see the file COPYING.  If not, see
## <https://www.gnu.org/licenses/>.
##
########################################################################

## -*- texinfo -*-
## @deftypefn  {} {@var{B} =} rot90 (@var{A})
## @deftypefnx {} {@var{B} =} rot90 (@var{A}, @var{k})
## Rotate array by 90 degree increments.
##
## Return a copy of @var{A} with the elements rotated counterclockwise in
## 90-degree increments.
##
## The second argument is optional, and specifies how many 90-degree rotations
## are to be applied (the default value is 1).  Negative values of @var{k}
## rotate the matrix in a clockwise direction.
## For example,
##
## @example
## @group
## rot90 ([1, 2; 3, 4], -1)
##     @result{}  3  1
##         4  2
## @end group
## @end example
##
## @noindent
## rotates the given matrix clockwise by 90 degrees.  The following are all
## equivalent statements:
##
## @example
## @group
## rot90 ([1, 2; 3, 4], -1)
## rot90 ([1, 2; 3, 4], 3)
## rot90 ([1, 2; 3, 4], 7)
## @end group
## @end example
##
## The rotation is always performed on the plane of the first two dimensions,
## i.e., rows and columns.  To perform a rotation on any other plane, use
## @code{rotdim}.
##
## @seealso{rotdim, fliplr, flipud, flip}
## @end deftypefn

function B = rot90 (A, k = 1)

  if (nargin < 1)
    print_usage ();
  endif

  if (! (isscalar (k) && isreal (k) && k == fix (k)))
    error ("rot90: K must be a single real integer");
  endif

  k = mod (k, 4);
  nd = ndims (A);

  if (k == 0)
    B = A;
  elseif (k == 1)
    B = flipud (permute (A, [2 1 3:1:nd]));
  elseif (k == 2)
    idx(1:nd) = {':'};
    idx{1} = rows (A):-1:1;
    idx{2} = columns (A):-1:1;
    B = A(idx{:});
  elseif (k == 3)
    B = permute (flipud (A), [2 1 3:1:nd]);
  else
    error ("rot90: internal error!");
  endif

endfunction


%!test
%! x1 = [1, 2; 3, 4];
%! x2 = [2, 4; 1, 3];
%! x3 = [4, 3; 2, 1];
%! x4 = [3, 1; 4, 2];
%!
%! assert (rot90 (x1), x2);
%! assert (rot90 (x1, 2), x3);
%! assert (rot90 (x1, 3), x4);
%! assert (rot90 (x1, 4), x1);
%! assert (rot90 (x1, 5), x2);
%! assert (rot90 (x1, -1), x4);

## Test NDArrays
%!test
%! a(1:2,1:2,1) = [1 2; 3 4];
%! a(1:2,1:2,2) = [5 6; 7 8];
%! b(1:2,1:2,1) = [2 4; 1 3];
%! b(1:2,1:2,2) = [6 8; 5 7];
%! assert (rot90 (a, 1), b);
%! assert (rot90 (a, 2), rot90 (b, 1));
%! assert (rot90 (a, 3), rot90 (b, 2));

%!test
%! a = b = zeros (2, 2, 1, 2);
%! a(1:2,1:2,:,1) = [1 2; 3 4];
%! a(1:2,1:2,:,2) = [5 6; 7 8];
%! b(1:2,1:2,:,1) = [2 4; 1 3];
%! b(1:2,1:2,:,2) = [6 8; 5 7];
%! assert (rot90 (a, 1), b);
%! assert (rot90 (a, 2), rot90 (b, 1));
%! assert (rot90 (a, 3), rot90 (b, 2));

## With non-square matrices
%!test
%! a = zeros (3, 2, 1, 2);
%! b = zeros (2, 3, 1, 2);
%! a(1:2,1:3,:,1) = [ 1  2  3;  4  5  6];
%! a(1:2,1:3,:,2) = [ 7  8  9; 10 11 12];
%! b(1:3,1:2,:,1) = [ 3  6;  2  5;  1  4];
%! b(1:3,1:2,:,2) = [ 9 12;  8 11;  7 10];
%! assert (rot90 (a, 1), b);
%! assert (rot90 (a, 2), rot90 (b, 1));
%! assert (rot90 (a, 3), rot90 (b, 2));

## Test input validation
%!error <Invalid call> rot90 ()
%!error rot90 (1, ones (2))
%!error rot90 (1, 1.5)
%!error rot90 (1, 1+i)