view liboctave/array/fCMatrix.cc @ 22204:469c817eb256

svd: reduce code duplication with more use of template and macro. * liboctave/numeric/svd.cc, liboctave/numeric/svd.h: remove unused constructor with reference for int (info). This allows to move all of the constructor into a single template, so remove init(). Two new methods, gesvd and gesdd, are fully specialized but the main hunck of code are the long list of arguments. Scope type and drive enums to the svd class for clarity, and rename member names. Add a new member for the drive used. * libinterp/corefcn/svd.cc: fix typenames for the svd enums which are now scoped. * CMatrix.cc, dMatrix.cc, fCMatrix.cc, fMatrix.cc: fix typenames for the svd enums which are now scoped.
author Carnë Draug <carandraug@octave.org>
date Thu, 04 Aug 2016 20:20:27 +0100
parents e43d83253e28
children 77c4d43e06d1
line wrap: on
line source

// Matrix manipulations.
/*

Copyright (C) 1994-2015 John W. Eaton
Copyright (C) 2008-2009 Jaroslav Hajek
Copyright (C) 2009 VZLU Prague, a.s.

This file is part of Octave.

Octave is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation; either version 3 of the License, or (at your
option) any later version.

Octave is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
for more details.

You should have received a copy of the GNU General Public License
along with Octave; see the file COPYING.  If not, see
<http://www.gnu.org/licenses/>.

*/

#if defined (HAVE_CONFIG_H)
#  include "config.h"
#endif

#include <cfloat>

#include <iostream>
#include <vector>

// FIXME
#include <sys/types.h>

#include "Array-util.h"
#include "DET.h"
#include "f77-fcn.h"
#include "boolMatrix.h"
#include "chMatrix.h"
#include "chol.h"
#include "fCMatrix.h"
#include "fCNDArray.h"
#include "fCDiagMatrix.h"
#include "fCColVector.h"
#include "fCRowVector.h"
#include "schur.h"
#include "svd.h"
#include "functor.h"
#include "lo-error.h"
#include "lo-ieee.h"
#include "lo-mappers.h"
#include "lo-utils.h"
#include "mx-fcm-fdm.h"
#include "mx-fcm-fs.h"
#include "mx-fdm-fcm.h"
#include "mx-inlines.cc"
#include "mx-op-defs.h"
#include "oct-cmplx.h"
#include "oct-fftw.h"
#include "oct-locbuf.h"
#include "oct-norm.h"

// Fortran functions we call.

extern "C"
{
  F77_RET_T
  F77_FUNC (xilaenv, XILAENV) (const F77_INT&,
                               F77_CONST_CHAR_ARG_DECL,
                               F77_CONST_CHAR_ARG_DECL,
                               const F77_INT&, const F77_INT&,
                               const F77_INT&, const F77_INT&,
                               F77_INT&
                               F77_CHAR_ARG_LEN_DECL
                               F77_CHAR_ARG_LEN_DECL);

  F77_RET_T
  F77_FUNC (cgebal, CGEBAL) (F77_CONST_CHAR_ARG_DECL,
                             const F77_INT&, F77_CMPLX*,
                             const F77_INT&, F77_INT&,
                             F77_INT&, F77_REAL*, F77_INT&
                             F77_CHAR_ARG_LEN_DECL);

  F77_RET_T
  F77_FUNC (sgebak, SGEBAK) (F77_CONST_CHAR_ARG_DECL,
                             F77_CONST_CHAR_ARG_DECL,
                             const F77_INT&, const F77_INT&,
                             const F77_INT&, F77_REAL*,
                             const F77_INT&, F77_REAL*,
                             const F77_INT&, F77_INT&
                             F77_CHAR_ARG_LEN_DECL
                             F77_CHAR_ARG_LEN_DECL);

  F77_RET_T
  F77_FUNC (cgemm, CGEMM) (F77_CONST_CHAR_ARG_DECL,
                           F77_CONST_CHAR_ARG_DECL,
                           const F77_INT&, const F77_INT&,
                           const F77_INT&, const F77_CMPLX&,
                           const F77_CMPLX*, const F77_INT&,
                           const F77_CMPLX*, const F77_INT&,
                           const F77_CMPLX&, F77_CMPLX*,
                           const F77_INT&
                           F77_CHAR_ARG_LEN_DECL
                           F77_CHAR_ARG_LEN_DECL);

  F77_RET_T
  F77_FUNC (cgemv, CGEMV) (F77_CONST_CHAR_ARG_DECL,
                           const F77_INT&, const F77_INT&,
                           const F77_CMPLX&, const F77_CMPLX*,
                           const F77_INT&, const F77_CMPLX*,
                           const F77_INT&, const F77_CMPLX&,
                           F77_CMPLX*, const F77_INT&
                           F77_CHAR_ARG_LEN_DECL);

  F77_RET_T
  F77_FUNC (xcdotu, XCDOTU) (const F77_INT&, const F77_CMPLX*,
                             const F77_INT&, const F77_CMPLX*,
                             const F77_INT&, F77_CMPLX*);

  F77_RET_T
  F77_FUNC (xcdotc, XCDOTC) (const F77_INT&, const F77_CMPLX*,
                             const F77_INT&, const F77_CMPLX*,
                             const F77_INT&, F77_CMPLX*);

  F77_RET_T
  F77_FUNC (csyrk, CSYRK) (F77_CONST_CHAR_ARG_DECL,
                           F77_CONST_CHAR_ARG_DECL,
                           const F77_INT&, const F77_INT&,
                           const F77_CMPLX&, const F77_CMPLX*,
                           const F77_INT&, const F77_CMPLX&,
                           F77_CMPLX*, const F77_INT&
                           F77_CHAR_ARG_LEN_DECL
                           F77_CHAR_ARG_LEN_DECL);

  F77_RET_T
  F77_FUNC (cherk, CHERK) (F77_CONST_CHAR_ARG_DECL,
                           F77_CONST_CHAR_ARG_DECL,
                           const F77_INT&, const F77_INT&,
                           const F77_REAL&, const F77_CMPLX*,
                           const F77_INT&, const F77_REAL&,
                           F77_CMPLX*, const F77_INT&
                           F77_CHAR_ARG_LEN_DECL
                           F77_CHAR_ARG_LEN_DECL);

  F77_RET_T
  F77_FUNC (cgetrf, CGETRF) (const F77_INT&, const F77_INT&,
                             F77_CMPLX*, const F77_INT&,
                             F77_INT*, F77_INT&);

  F77_RET_T
  F77_FUNC (cgetrs, CGETRS) (F77_CONST_CHAR_ARG_DECL,
                             const F77_INT&, const F77_INT&,
                             F77_CMPLX*, const F77_INT&,
                             const F77_INT*, F77_CMPLX*,
                             const F77_INT&, F77_INT&
                             F77_CHAR_ARG_LEN_DECL);

  F77_RET_T
  F77_FUNC (cgetri, CGETRI) (const F77_INT&, F77_CMPLX*,
                             const F77_INT&, const F77_INT*,
                             F77_CMPLX*, const F77_INT&,
                             F77_INT&);

  F77_RET_T
  F77_FUNC (cgecon, CGECON) (F77_CONST_CHAR_ARG_DECL,
                             const F77_INT&, F77_CMPLX*,
                             const F77_INT&, const F77_REAL&, F77_REAL&,
                             F77_CMPLX*, F77_REAL*, F77_INT&
                             F77_CHAR_ARG_LEN_DECL);

  F77_RET_T
  F77_FUNC (cgelsy, CGELSY) (const F77_INT&, const F77_INT&,
                             const F77_INT&, F77_CMPLX*,
                             const F77_INT&, F77_CMPLX*,
                             const F77_INT&, F77_INT*,
                             F77_REAL&, F77_INT&, F77_CMPLX*,
                             const F77_INT&, F77_REAL*, F77_INT&);

  F77_RET_T
  F77_FUNC (cgelsd, CGELSD) (const F77_INT&, const F77_INT&,
                             const F77_INT&, F77_CMPLX*,
                             const F77_INT&, F77_CMPLX*,
                             const F77_INT&, F77_REAL*, F77_REAL&,
                             F77_INT&, F77_CMPLX*,
                             const F77_INT&, F77_REAL*,
                             F77_INT*, F77_INT&);

  F77_RET_T
  F77_FUNC (cpotrf, CPOTRF) (F77_CONST_CHAR_ARG_DECL,
                             const F77_INT&, F77_CMPLX*,
                             const F77_INT&, F77_INT&
                             F77_CHAR_ARG_LEN_DECL);

  F77_RET_T
  F77_FUNC (cpocon, CPOCON) (F77_CONST_CHAR_ARG_DECL,
                             const F77_INT&, F77_CMPLX*,
                             const F77_INT&, const F77_REAL&, F77_REAL&,
                             F77_CMPLX*, F77_REAL*, F77_INT&
                             F77_CHAR_ARG_LEN_DECL);

  F77_RET_T
  F77_FUNC (cpotrs, CPOTRS) (F77_CONST_CHAR_ARG_DECL,
                             const F77_INT&,
                             const F77_INT&, const F77_CMPLX*,
                             const F77_INT&, F77_CMPLX*,
                             const F77_INT&, F77_INT&
                             F77_CHAR_ARG_LEN_DECL);

  F77_RET_T
  F77_FUNC (ctrtri, CTRTRI) (F77_CONST_CHAR_ARG_DECL,
                             F77_CONST_CHAR_ARG_DECL,
                             const F77_INT&, const F77_CMPLX*,
                             const F77_INT&, F77_INT&
                             F77_CHAR_ARG_LEN_DECL
                             F77_CHAR_ARG_LEN_DECL);

  F77_RET_T
  F77_FUNC (ctrcon, CTRCON) (F77_CONST_CHAR_ARG_DECL,
                             F77_CONST_CHAR_ARG_DECL,
                             F77_CONST_CHAR_ARG_DECL,
                             const F77_INT&, const F77_CMPLX*,
                             const F77_INT&, F77_REAL&, F77_CMPLX*,
                             F77_REAL*, F77_INT&
                             F77_CHAR_ARG_LEN_DECL
                             F77_CHAR_ARG_LEN_DECL
                             F77_CHAR_ARG_LEN_DECL);

  F77_RET_T
  F77_FUNC (ctrtrs, CTRTRS) (F77_CONST_CHAR_ARG_DECL,
                             F77_CONST_CHAR_ARG_DECL,
                             F77_CONST_CHAR_ARG_DECL,
                             const F77_INT&, const F77_INT&,
                             const F77_CMPLX*, const F77_INT&,
                             F77_CMPLX*, const F77_INT&,
                             F77_INT&
                             F77_CHAR_ARG_LEN_DECL
                             F77_CHAR_ARG_LEN_DECL
                             F77_CHAR_ARG_LEN_DECL);

  F77_RET_T
  F77_FUNC (clartg, CLARTG) (const F77_CMPLX*, const F77_CMPLX*,
                             F77_REAL&, F77_CMPLX*, F77_CMPLX*);

  F77_RET_T
  F77_FUNC (ctrsyl, CTRSYL) (F77_CONST_CHAR_ARG_DECL,
                             F77_CONST_CHAR_ARG_DECL,
                             const F77_INT&, const F77_INT&,
                             const F77_INT&, const F77_CMPLX*,
                             const F77_INT&, const F77_CMPLX*,
                             const F77_INT&, const F77_CMPLX*,
                             const F77_INT&, F77_REAL&, F77_INT&
                             F77_CHAR_ARG_LEN_DECL
                             F77_CHAR_ARG_LEN_DECL);

  F77_RET_T
  F77_FUNC (xclange, XCLANGE) (F77_CONST_CHAR_ARG_DECL,
                               const F77_INT&, const F77_INT&,
                               const F77_CMPLX*, const F77_INT&,
                               F77_REAL*, F77_REAL&
                               F77_CHAR_ARG_LEN_DECL);
}

static const FloatComplex FloatComplex_NaN_result (octave::numeric_limits<float>::NaN (),
                                                   octave::numeric_limits<float>::NaN ());

// FloatComplex Matrix class

FloatComplexMatrix::FloatComplexMatrix (const FloatMatrix& a)
  : FloatComplexNDArray (a)
{
}

FloatComplexMatrix::FloatComplexMatrix (const FloatRowVector& rv)
  : FloatComplexNDArray (rv)
{
}

FloatComplexMatrix::FloatComplexMatrix (const FloatColumnVector& cv)
  : FloatComplexNDArray (cv)
{
}

FloatComplexMatrix::FloatComplexMatrix (const FloatDiagMatrix& a)
  : FloatComplexNDArray (a.dims (), 0.0)
{
  for (octave_idx_type i = 0; i < a.length (); i++)
    elem (i, i) = a.elem (i, i);
}

FloatComplexMatrix::FloatComplexMatrix (const MDiagArray2<float>& a)
  : FloatComplexNDArray (a.dims (), 0.0)
{
  for (octave_idx_type i = 0; i < a.length (); i++)
    elem (i, i) = a.elem (i, i);
}

FloatComplexMatrix::FloatComplexMatrix (const DiagArray2<float>& a)
  : FloatComplexNDArray (a.dims (), 0.0)
{
  for (octave_idx_type i = 0; i < a.length (); i++)
    elem (i, i) = a.elem (i, i);
}

FloatComplexMatrix::FloatComplexMatrix (const FloatComplexRowVector& rv)
  : FloatComplexNDArray (rv)
{
}

FloatComplexMatrix::FloatComplexMatrix (const FloatComplexColumnVector& cv)
  : FloatComplexNDArray (cv)
{
}

FloatComplexMatrix::FloatComplexMatrix (const FloatComplexDiagMatrix& a)
  : FloatComplexNDArray (a.dims (), 0.0)
{
  for (octave_idx_type i = 0; i < a.length (); i++)
    elem (i, i) = a.elem (i, i);
}

FloatComplexMatrix::FloatComplexMatrix (const MDiagArray2<FloatComplex>& a)
  : FloatComplexNDArray (a.dims (), 0.0)
{
  for (octave_idx_type i = 0; i < a.length (); i++)
    elem (i, i) = a.elem (i, i);
}

FloatComplexMatrix::FloatComplexMatrix (const DiagArray2<FloatComplex>& a)
  : FloatComplexNDArray (a.dims (), 0.0)
{
  for (octave_idx_type i = 0; i < a.length (); i++)
    elem (i, i) = a.elem (i, i);
}

// FIXME: could we use a templated mixed-type copy function
// here?

FloatComplexMatrix::FloatComplexMatrix (const boolMatrix& a)
  : FloatComplexNDArray (a)
{
}

FloatComplexMatrix::FloatComplexMatrix (const charMatrix& a)
  : FloatComplexNDArray (a.dims (), 0.0)
{
  for (octave_idx_type i = 0; i < a.rows (); i++)
    for (octave_idx_type j = 0; j < a.cols (); j++)
      elem (i, j) = static_cast<unsigned char> (a.elem (i, j));
}

FloatComplexMatrix::FloatComplexMatrix (const FloatMatrix& re,
                                        const FloatMatrix& im)
  : FloatComplexNDArray (re.dims ())
{
  if (im.rows () != rows () || im.cols () != cols ())
    (*current_liboctave_error_handler) ("complex: internal error");

  octave_idx_type nel = numel ();
  for (octave_idx_type i = 0; i < nel; i++)
    xelem (i) = FloatComplex (re(i), im(i));
}

bool
FloatComplexMatrix::operator == (const FloatComplexMatrix& a) const
{
  if (rows () != a.rows () || cols () != a.cols ())
    return false;

  return mx_inline_equal (numel (), data (), a.data ());
}

bool
FloatComplexMatrix::operator != (const FloatComplexMatrix& a) const
{
  return !(*this == a);
}

bool
FloatComplexMatrix::is_hermitian (void) const
{
  octave_idx_type nr = rows ();
  octave_idx_type nc = cols ();

  if (is_square () && nr > 0)
    {
      for (octave_idx_type i = 0; i < nr; i++)
        for (octave_idx_type j = i; j < nc; j++)
          if (elem (i, j) != conj (elem (j, i)))
            return false;

      return true;
    }

  return false;
}

// destructive insert/delete/reorder operations

FloatComplexMatrix&
FloatComplexMatrix::insert (const FloatMatrix& a,
                            octave_idx_type r, octave_idx_type c)
{
  octave_idx_type a_nr = a.rows ();
  octave_idx_type a_nc = a.cols ();

  if (r < 0 || r + a_nr > rows () || c < 0 || c + a_nc > cols ())
    (*current_liboctave_error_handler) ("range error for insert");

  if (a_nr >0 && a_nc > 0)
    {
      make_unique ();

      for (octave_idx_type j = 0; j < a_nc; j++)
        for (octave_idx_type i = 0; i < a_nr; i++)
          xelem (r+i, c+j) = a.elem (i, j);
    }

  return *this;
}

FloatComplexMatrix&
FloatComplexMatrix::insert (const FloatRowVector& a,
                            octave_idx_type r, octave_idx_type c)
{
  octave_idx_type a_len = a.numel ();

  if (r < 0 || r >= rows () || c < 0 || c + a_len > cols ())
    (*current_liboctave_error_handler) ("range error for insert");

  if (a_len > 0)
    {
      make_unique ();

      for (octave_idx_type i = 0; i < a_len; i++)
        xelem (r, c+i) = a.elem (i);
    }

  return *this;
}

FloatComplexMatrix&
FloatComplexMatrix::insert (const FloatColumnVector& a,
                            octave_idx_type r, octave_idx_type c)
{
  octave_idx_type a_len = a.numel ();

  if (r < 0 || r + a_len > rows () || c < 0 || c >= cols ())
    (*current_liboctave_error_handler) ("range error for insert");

  if (a_len > 0)
    {
      make_unique ();

      for (octave_idx_type i = 0; i < a_len; i++)
        xelem (r+i, c) = a.elem (i);
    }

  return *this;
}

FloatComplexMatrix&
FloatComplexMatrix::insert (const FloatDiagMatrix& a,
                            octave_idx_type r, octave_idx_type c)
{
  octave_idx_type a_nr = a.rows ();
  octave_idx_type a_nc = a.cols ();

  if (r < 0 || r + a_nr > rows () || c < 0 || c + a_nc > cols ())
    (*current_liboctave_error_handler) ("range error for insert");

  fill (0.0, r, c, r + a_nr - 1, c + a_nc - 1);

  octave_idx_type a_len = a.length ();

  if (a_len > 0)
    {
      make_unique ();

      for (octave_idx_type i = 0; i < a_len; i++)
        xelem (r+i, c+i) = a.elem (i, i);
    }

  return *this;
}

FloatComplexMatrix&
FloatComplexMatrix::insert (const FloatComplexMatrix& a,
                            octave_idx_type r, octave_idx_type c)
{
  Array<FloatComplex>::insert (a, r, c);
  return *this;
}

FloatComplexMatrix&
FloatComplexMatrix::insert (const FloatComplexRowVector& a,
                            octave_idx_type r, octave_idx_type c)
{
  octave_idx_type a_len = a.numel ();
  if (r < 0 || r >= rows () || c < 0 || c + a_len > cols ())
    (*current_liboctave_error_handler) ("range error for insert");

  for (octave_idx_type i = 0; i < a_len; i++)
    elem (r, c+i) = a.elem (i);

  return *this;
}

FloatComplexMatrix&
FloatComplexMatrix::insert (const FloatComplexColumnVector& a,
                            octave_idx_type r, octave_idx_type c)
{
  octave_idx_type a_len = a.numel ();

  if (r < 0 || r + a_len > rows () || c < 0 || c >= cols ())
    (*current_liboctave_error_handler) ("range error for insert");

  if (a_len > 0)
    {
      make_unique ();

      for (octave_idx_type i = 0; i < a_len; i++)
        xelem (r+i, c) = a.elem (i);
    }

  return *this;
}

FloatComplexMatrix&
FloatComplexMatrix::insert (const FloatComplexDiagMatrix& a,
                            octave_idx_type r, octave_idx_type c)
{
  octave_idx_type a_nr = a.rows ();
  octave_idx_type a_nc = a.cols ();

  if (r < 0 || r + a_nr > rows () || c < 0 || c + a_nc > cols ())
    (*current_liboctave_error_handler) ("range error for insert");

  fill (0.0, r, c, r + a_nr - 1, c + a_nc - 1);

  octave_idx_type a_len = a.length ();

  if (a_len > 0)
    {
      make_unique ();

      for (octave_idx_type i = 0; i < a_len; i++)
        xelem (r+i, c+i) = a.elem (i, i);
    }

  return *this;
}

FloatComplexMatrix&
FloatComplexMatrix::fill (float val)
{
  octave_idx_type nr = rows ();
  octave_idx_type nc = cols ();

  if (nr > 0 && nc > 0)
    {
      make_unique ();

      for (octave_idx_type j = 0; j < nc; j++)
        for (octave_idx_type i = 0; i < nr; i++)
          xelem (i, j) = val;
    }

  return *this;
}

FloatComplexMatrix&
FloatComplexMatrix::fill (const FloatComplex& val)
{
  octave_idx_type nr = rows ();
  octave_idx_type nc = cols ();

  if (nr > 0 && nc > 0)
    {
      make_unique ();

      for (octave_idx_type j = 0; j < nc; j++)
        for (octave_idx_type i = 0; i < nr; i++)
          xelem (i, j) = val;
    }

  return *this;
}

FloatComplexMatrix&
FloatComplexMatrix::fill (float val, octave_idx_type r1, octave_idx_type c1,
                          octave_idx_type r2, octave_idx_type c2)
{
  octave_idx_type nr = rows ();
  octave_idx_type nc = cols ();

  if (r1 < 0 || r2 < 0 || c1 < 0 || c2 < 0
      || r1 >= nr || r2 >= nr || c1 >= nc || c2 >= nc)
    (*current_liboctave_error_handler) ("range error for fill");

  if (r1 > r2) { std::swap (r1, r2); }
  if (c1 > c2) { std::swap (c1, c2); }

  if (r2 >= r1 && c2 >= c1)
    {
      make_unique ();

      for (octave_idx_type j = c1; j <= c2; j++)
        for (octave_idx_type i = r1; i <= r2; i++)
          xelem (i, j) = val;
    }

  return *this;
}

FloatComplexMatrix&
FloatComplexMatrix::fill (const FloatComplex& val,
                          octave_idx_type r1, octave_idx_type c1,
                          octave_idx_type r2, octave_idx_type c2)
{
  octave_idx_type nr = rows ();
  octave_idx_type nc = cols ();

  if (r1 < 0 || r2 < 0 || c1 < 0 || c2 < 0
      || r1 >= nr || r2 >= nr || c1 >= nc || c2 >= nc)
    (*current_liboctave_error_handler) ("range error for fill");

  if (r1 > r2) { std::swap (r1, r2); }
  if (c1 > c2) { std::swap (c1, c2); }

  if (r2 >= r1 && c2 >=c1)
    {
      make_unique ();

      for (octave_idx_type j = c1; j <= c2; j++)
        for (octave_idx_type i = r1; i <= r2; i++)
          xelem (i, j) = val;
    }

  return *this;
}

FloatComplexMatrix
FloatComplexMatrix::append (const FloatMatrix& a) const
{
  octave_idx_type nr = rows ();
  octave_idx_type nc = cols ();
  if (nr != a.rows ())
    (*current_liboctave_error_handler) ("row dimension mismatch for append");

  octave_idx_type nc_insert = nc;
  FloatComplexMatrix retval (nr, nc + a.cols ());
  retval.insert (*this, 0, 0);
  retval.insert (a, 0, nc_insert);
  return retval;
}

FloatComplexMatrix
FloatComplexMatrix::append (const FloatRowVector& a) const
{
  octave_idx_type nr = rows ();
  octave_idx_type nc = cols ();
  if (nr != 1)
    (*current_liboctave_error_handler) ("row dimension mismatch for append");

  octave_idx_type nc_insert = nc;
  FloatComplexMatrix retval (nr, nc + a.numel ());
  retval.insert (*this, 0, 0);
  retval.insert (a, 0, nc_insert);
  return retval;
}

FloatComplexMatrix
FloatComplexMatrix::append (const FloatColumnVector& a) const
{
  octave_idx_type nr = rows ();
  octave_idx_type nc = cols ();
  if (nr != a.numel ())
    (*current_liboctave_error_handler) ("row dimension mismatch for append");

  octave_idx_type nc_insert = nc;
  FloatComplexMatrix retval (nr, nc + 1);
  retval.insert (*this, 0, 0);
  retval.insert (a, 0, nc_insert);
  return retval;
}

FloatComplexMatrix
FloatComplexMatrix::append (const FloatDiagMatrix& a) const
{
  octave_idx_type nr = rows ();
  octave_idx_type nc = cols ();
  if (nr != a.rows ())
    (*current_liboctave_error_handler) ("row dimension mismatch for append");

  octave_idx_type nc_insert = nc;
  FloatComplexMatrix retval (nr, nc + a.cols ());
  retval.insert (*this, 0, 0);
  retval.insert (a, 0, nc_insert);
  return retval;
}

FloatComplexMatrix
FloatComplexMatrix::append (const FloatComplexMatrix& a) const
{
  octave_idx_type nr = rows ();
  octave_idx_type nc = cols ();
  if (nr != a.rows ())
    (*current_liboctave_error_handler) ("row dimension mismatch for append");

  octave_idx_type nc_insert = nc;
  FloatComplexMatrix retval (nr, nc + a.cols ());
  retval.insert (*this, 0, 0);
  retval.insert (a, 0, nc_insert);
  return retval;
}

FloatComplexMatrix
FloatComplexMatrix::append (const FloatComplexRowVector& a) const
{
  octave_idx_type nr = rows ();
  octave_idx_type nc = cols ();
  if (nr != 1)
    (*current_liboctave_error_handler) ("row dimension mismatch for append");

  octave_idx_type nc_insert = nc;
  FloatComplexMatrix retval (nr, nc + a.numel ());
  retval.insert (*this, 0, 0);
  retval.insert (a, 0, nc_insert);
  return retval;
}

FloatComplexMatrix
FloatComplexMatrix::append (const FloatComplexColumnVector& a) const
{
  octave_idx_type nr = rows ();
  octave_idx_type nc = cols ();
  if (nr != a.numel ())
    (*current_liboctave_error_handler) ("row dimension mismatch for append");

  octave_idx_type nc_insert = nc;
  FloatComplexMatrix retval (nr, nc + 1);
  retval.insert (*this, 0, 0);
  retval.insert (a, 0, nc_insert);
  return retval;
}

FloatComplexMatrix
FloatComplexMatrix::append (const FloatComplexDiagMatrix& a) const
{
  octave_idx_type nr = rows ();
  octave_idx_type nc = cols ();
  if (nr != a.rows ())
    (*current_liboctave_error_handler) ("row dimension mismatch for append");

  octave_idx_type nc_insert = nc;
  FloatComplexMatrix retval (nr, nc + a.cols ());
  retval.insert (*this, 0, 0);
  retval.insert (a, 0, nc_insert);
  return retval;
}

FloatComplexMatrix
FloatComplexMatrix::stack (const FloatMatrix& a) const
{
  octave_idx_type nr = rows ();
  octave_idx_type nc = cols ();
  if (nc != a.cols ())
    (*current_liboctave_error_handler) ("column dimension mismatch for stack");

  octave_idx_type nr_insert = nr;
  FloatComplexMatrix retval (nr + a.rows (), nc);
  retval.insert (*this, 0, 0);
  retval.insert (a, nr_insert, 0);
  return retval;
}

FloatComplexMatrix
FloatComplexMatrix::stack (const FloatRowVector& a) const
{
  octave_idx_type nr = rows ();
  octave_idx_type nc = cols ();
  if (nc != a.numel ())
    (*current_liboctave_error_handler) ("column dimension mismatch for stack");

  octave_idx_type nr_insert = nr;
  FloatComplexMatrix retval (nr + 1, nc);
  retval.insert (*this, 0, 0);
  retval.insert (a, nr_insert, 0);
  return retval;
}

FloatComplexMatrix
FloatComplexMatrix::stack (const FloatColumnVector& a) const
{
  octave_idx_type nr = rows ();
  octave_idx_type nc = cols ();
  if (nc != 1)
    (*current_liboctave_error_handler) ("column dimension mismatch for stack");

  octave_idx_type nr_insert = nr;
  FloatComplexMatrix retval (nr + a.numel (), nc);
  retval.insert (*this, 0, 0);
  retval.insert (a, nr_insert, 0);
  return retval;
}

FloatComplexMatrix
FloatComplexMatrix::stack (const FloatDiagMatrix& a) const
{
  octave_idx_type nr = rows ();
  octave_idx_type nc = cols ();
  if (nc != a.cols ())
    (*current_liboctave_error_handler) ("column dimension mismatch for stack");

  octave_idx_type nr_insert = nr;
  FloatComplexMatrix retval (nr + a.rows (), nc);
  retval.insert (*this, 0, 0);
  retval.insert (a, nr_insert, 0);
  return retval;
}

FloatComplexMatrix
FloatComplexMatrix::stack (const FloatComplexMatrix& a) const
{
  octave_idx_type nr = rows ();
  octave_idx_type nc = cols ();
  if (nc != a.cols ())
    (*current_liboctave_error_handler) ("column dimension mismatch for stack");

  octave_idx_type nr_insert = nr;
  FloatComplexMatrix retval (nr + a.rows (), nc);
  retval.insert (*this, 0, 0);
  retval.insert (a, nr_insert, 0);
  return retval;
}

FloatComplexMatrix
FloatComplexMatrix::stack (const FloatComplexRowVector& a) const
{
  octave_idx_type nr = rows ();
  octave_idx_type nc = cols ();
  if (nc != a.numel ())
    (*current_liboctave_error_handler) ("column dimension mismatch for stack");

  octave_idx_type nr_insert = nr;
  FloatComplexMatrix retval (nr + 1, nc);
  retval.insert (*this, 0, 0);
  retval.insert (a, nr_insert, 0);
  return retval;
}

FloatComplexMatrix
FloatComplexMatrix::stack (const FloatComplexColumnVector& a) const
{
  octave_idx_type nr = rows ();
  octave_idx_type nc = cols ();
  if (nc != 1)
    (*current_liboctave_error_handler) ("column dimension mismatch for stack");

  octave_idx_type nr_insert = nr;
  FloatComplexMatrix retval (nr + a.numel (), nc);
  retval.insert (*this, 0, 0);
  retval.insert (a, nr_insert, 0);
  return retval;
}

FloatComplexMatrix
FloatComplexMatrix::stack (const FloatComplexDiagMatrix& a) const
{
  octave_idx_type nr = rows ();
  octave_idx_type nc = cols ();
  if (nc != a.cols ())
    (*current_liboctave_error_handler) ("column dimension mismatch for stack");

  octave_idx_type nr_insert = nr;
  FloatComplexMatrix retval (nr + a.rows (), nc);
  retval.insert (*this, 0, 0);
  retval.insert (a, nr_insert, 0);
  return retval;
}

FloatComplexMatrix
conj (const FloatComplexMatrix& a)
{
  return do_mx_unary_map<FloatComplex, FloatComplex, std::conj<float> > (a);
}

// resize is the destructive equivalent for this one

FloatComplexMatrix
FloatComplexMatrix::extract (octave_idx_type r1, octave_idx_type c1,
                             octave_idx_type r2, octave_idx_type c2) const
{
  if (r1 > r2) { std::swap (r1, r2); }
  if (c1 > c2) { std::swap (c1, c2); }

  return index (idx_vector (r1, r2+1), idx_vector (c1, c2+1));
}

FloatComplexMatrix
FloatComplexMatrix::extract_n (octave_idx_type r1, octave_idx_type c1,
                               octave_idx_type nr, octave_idx_type nc) const
{
  return index (idx_vector (r1, r1 + nr), idx_vector (c1, c1 + nc));
}

// extract row or column i.

FloatComplexRowVector
FloatComplexMatrix::row (octave_idx_type i) const
{
  return index (idx_vector (i), idx_vector::colon);
}

FloatComplexColumnVector
FloatComplexMatrix::column (octave_idx_type i) const
{
  return index (idx_vector::colon, idx_vector (i));
}

FloatComplexMatrix
FloatComplexMatrix::inverse (void) const
{
  octave_idx_type info;
  float rcon;
  MatrixType mattype (*this);
  return inverse (mattype, info, rcon, 0, 0);
}

FloatComplexMatrix
FloatComplexMatrix::inverse (octave_idx_type& info) const
{
  float rcon;
  MatrixType mattype (*this);
  return inverse (mattype, info, rcon, 0, 0);
}

FloatComplexMatrix
FloatComplexMatrix::inverse (octave_idx_type& info, float& rcon, bool force,
                             bool calc_cond) const
{
  MatrixType mattype (*this);
  return inverse (mattype, info, rcon, force, calc_cond);
}

FloatComplexMatrix
FloatComplexMatrix::inverse (MatrixType &mattype) const
{
  octave_idx_type info;
  float rcon;
  return inverse (mattype, info, rcon, 0, 0);
}

FloatComplexMatrix
FloatComplexMatrix::inverse (MatrixType &mattype, octave_idx_type& info) const
{
  float rcon;
  return inverse (mattype, info, rcon, 0, 0);
}

FloatComplexMatrix
FloatComplexMatrix::tinverse (MatrixType &mattype, octave_idx_type& info,
                              float& rcon, bool force, bool calc_cond) const
{
  FloatComplexMatrix retval;

  octave_idx_type nr = rows ();
  octave_idx_type nc = cols ();

  if (nr != nc || nr == 0 || nc == 0)
    (*current_liboctave_error_handler) ("inverse requires square matrix");

  int typ = mattype.type ();
  char uplo = (typ == MatrixType::Lower ? 'L' : 'U');
  char udiag = 'N';
  retval = *this;
  FloatComplex *tmp_data = retval.fortran_vec ();

  F77_XFCN (ctrtri, CTRTRI, (F77_CONST_CHAR_ARG2 (&uplo, 1),
                             F77_CONST_CHAR_ARG2 (&udiag, 1),
                             nr, F77_CMPLX_ARG (tmp_data), nr, info
                             F77_CHAR_ARG_LEN (1)
                             F77_CHAR_ARG_LEN (1)));

  // Throw-away extra info LAPACK gives so as to not change output.
  rcon = 0.0;
  if (info != 0)
    info = -1;
  else if (calc_cond)
    {
      octave_idx_type ztrcon_info = 0;
      char job = '1';

      OCTAVE_LOCAL_BUFFER (FloatComplex, cwork, 2*nr);
      OCTAVE_LOCAL_BUFFER (float, rwork, nr);

      F77_XFCN (ctrcon, CTRCON, (F77_CONST_CHAR_ARG2 (&job, 1),
                                 F77_CONST_CHAR_ARG2 (&uplo, 1),
                                 F77_CONST_CHAR_ARG2 (&udiag, 1),
                                 nr, F77_CMPLX_ARG (tmp_data), nr, rcon,
                                 F77_CMPLX_ARG (cwork), rwork, ztrcon_info
                                 F77_CHAR_ARG_LEN (1)
                                 F77_CHAR_ARG_LEN (1)
                                 F77_CHAR_ARG_LEN (1)));

      if (ztrcon_info != 0)
        info = -1;
    }

  if (info == -1 && ! force)
    retval = *this; // Restore matrix contents.

  return retval;
}

FloatComplexMatrix
FloatComplexMatrix::finverse (MatrixType &mattype, octave_idx_type& info,
                              float& rcon, bool force, bool calc_cond) const
{
  FloatComplexMatrix retval;

  octave_idx_type nr = rows ();
  octave_idx_type nc = cols ();

  if (nr != nc)
    (*current_liboctave_error_handler) ("inverse requires square matrix");

  Array<octave_idx_type> ipvt (dim_vector (nr, 1));
  octave_idx_type *pipvt = ipvt.fortran_vec ();

  retval = *this;
  FloatComplex *tmp_data = retval.fortran_vec ();

  Array<FloatComplex> z (dim_vector (1, 1));
  octave_idx_type lwork = -1;

  // Query the optimum work array size.

  F77_XFCN (cgetri, CGETRI, (nc, F77_CMPLX_ARG (tmp_data), nr, pipvt,
                             F77_CMPLX_ARG (z.fortran_vec ()), lwork, info));

  lwork = static_cast<octave_idx_type> (std::real (z(0)));
  lwork = (lwork <  2 *nc ? 2*nc : lwork);
  z.resize (dim_vector (lwork, 1));
  FloatComplex *pz = z.fortran_vec ();

  info = 0;

  // Calculate (always, see bug #45577) the norm of the matrix, for later use.
  float anorm =
    retval.abs ().sum ().row (static_cast<octave_idx_type>(0)).max ();

  // Work around bug #45577, LAPACK crashes Octave if norm is NaN
  // and bug #46330, segfault with matrices containing Inf & NaN
  if (octave::math::isnan (anorm) || octave::math::isinf (anorm))
    info = -1;
  else
    F77_XFCN (cgetrf, CGETRF, (nc, nc, F77_CMPLX_ARG (tmp_data), nr, pipvt, info));

  // Throw-away extra info LAPACK gives so as to not change output.
  rcon = 0.0;
  if (info != 0)
    info = -1;
  else if (calc_cond)
    {
      // Now calculate the condition number for non-singular matrix.
      octave_idx_type zgecon_info = 0;
      char job = '1';
      Array<float> rz (dim_vector (2 * nc, 1));
      float *prz = rz.fortran_vec ();
      F77_XFCN (cgecon, CGECON, (F77_CONST_CHAR_ARG2 (&job, 1),
                                 nc, F77_CMPLX_ARG (tmp_data), nr, anorm,
                                 rcon, F77_CMPLX_ARG (pz), prz, zgecon_info
                                 F77_CHAR_ARG_LEN (1)));

      if (zgecon_info != 0)
        info = -1;
    }

  if ((info == -1 && ! force) || octave::math::isinf (anorm))
    retval = *this;  // Restore contents.
  else
    {
      octave_idx_type zgetri_info = 0;

      F77_XFCN (cgetri, CGETRI, (nc, F77_CMPLX_ARG (tmp_data), nr, pipvt,
                                 F77_CMPLX_ARG (pz), lwork, zgetri_info));

      if (zgetri_info != 0)
        info = -1;
    }

  if (info != 0)
    mattype.mark_as_rectangular ();

  return retval;
}

FloatComplexMatrix
FloatComplexMatrix::inverse (MatrixType &mattype, octave_idx_type& info,
                             float& rcon, bool force, bool calc_cond) const
{
  int typ = mattype.type (false);
  FloatComplexMatrix ret;

  if (typ == MatrixType::Unknown)
    typ = mattype.type (*this);

  if (typ == MatrixType::Upper || typ == MatrixType::Lower)
    ret = tinverse (mattype, info, rcon, force, calc_cond);
  else
    {
      if (mattype.is_hermitian ())
        {
          chol<FloatComplexMatrix> chol (*this, info, true, calc_cond);
          if (info == 0)
            {
              if (calc_cond)
                rcon = chol.rcond ();
              else
                rcon = 1.0;
              ret = chol.inverse ();
            }
          else
            mattype.mark_as_unsymmetric ();
        }

      if (! mattype.is_hermitian ())
        ret = finverse (mattype, info, rcon, force, calc_cond);

      if ((mattype.is_hermitian () || calc_cond) && rcon == 0.)
        ret = FloatComplexMatrix (rows (), columns (),
                                  FloatComplex (octave::numeric_limits<float>::Inf (), 0.));
    }

  return ret;
}

FloatComplexMatrix
FloatComplexMatrix::pseudo_inverse (float tol) const
{
  FloatComplexMatrix retval;

  svd<FloatComplexMatrix> result (*this, svd<FloatComplexMatrix>::Type::economy);

  FloatDiagMatrix S = result.singular_values ();
  FloatComplexMatrix U = result.left_singular_matrix ();
  FloatComplexMatrix V = result.right_singular_matrix ();

  FloatColumnVector sigma = S.extract_diag ();

  octave_idx_type r = sigma.numel () - 1;
  octave_idx_type nr = rows ();
  octave_idx_type nc = cols ();

  if (tol <= 0.0)
    {
      if (nr > nc)
        tol = nr * sigma.elem (0) * std::numeric_limits<double>::epsilon ();
      else
        tol = nc * sigma.elem (0) * std::numeric_limits<double>::epsilon ();
    }

  while (r >= 0 && sigma.elem (r) < tol)
    r--;

  if (r < 0)
    retval = FloatComplexMatrix (nc, nr, 0.0);
  else
    {
      FloatComplexMatrix Ur = U.extract (0, 0, nr-1, r);
      FloatDiagMatrix D = FloatDiagMatrix (sigma.extract (0, r)).inverse ();
      FloatComplexMatrix Vr = V.extract (0, 0, nc-1, r);
      retval = Vr * D * Ur.hermitian ();
    }

  return retval;
}

#if defined (HAVE_FFTW)

FloatComplexMatrix
FloatComplexMatrix::fourier (void) const
{
  size_t nr = rows ();
  size_t nc = cols ();

  FloatComplexMatrix retval (nr, nc);

  size_t npts, nsamples;

  if (nr == 1 || nc == 1)
    {
      npts = nr > nc ? nr : nc;
      nsamples = 1;
    }
  else
    {
      npts = nr;
      nsamples = nc;
    }

  const FloatComplex *in (data ());
  FloatComplex *out (retval.fortran_vec ());

  octave_fftw::fft (in, out, npts, nsamples);

  return retval;
}

FloatComplexMatrix
FloatComplexMatrix::ifourier (void) const
{
  size_t nr = rows ();
  size_t nc = cols ();

  FloatComplexMatrix retval (nr, nc);

  size_t npts, nsamples;

  if (nr == 1 || nc == 1)
    {
      npts = nr > nc ? nr : nc;
      nsamples = 1;
    }
  else
    {
      npts = nr;
      nsamples = nc;
    }

  const FloatComplex *in (data ());
  FloatComplex *out (retval.fortran_vec ());

  octave_fftw::ifft (in, out, npts, nsamples);

  return retval;
}

FloatComplexMatrix
FloatComplexMatrix::fourier2d (void) const
{
  dim_vector dv (rows (), cols ());

  FloatComplexMatrix retval (rows (), cols ());
  const FloatComplex *in (data ());
  FloatComplex *out (retval.fortran_vec ());

  octave_fftw::fftNd (in, out, 2, dv);

  return retval;
}

FloatComplexMatrix
FloatComplexMatrix::ifourier2d (void) const
{
  dim_vector dv (rows (), cols ());

  FloatComplexMatrix retval (rows (), cols ());
  const FloatComplex *in (data ());
  FloatComplex *out (retval.fortran_vec ());

  octave_fftw::ifftNd (in, out, 2, dv);

  return retval;
}

#else

extern "C"
{
  F77_RET_T
  F77_FUNC (cffti, CFFTI) (const F77_INT&, F77_CMPLX*);

  F77_RET_T
  F77_FUNC (cfftf, CFFTF) (const F77_INT&, F77_CMPLX*, F77_CMPLX*);

  F77_RET_T
  F77_FUNC (cfftb, CFFTB) (const F77_INT&, F77_CMPLX*, F77_CMPLX*);
}

FloatComplexMatrix
FloatComplexMatrix::fourier (void) const
{
  FloatComplexMatrix retval;

  octave_idx_type nr = rows ();
  octave_idx_type nc = cols ();

  octave_idx_type npts, nsamples;

  if (nr == 1 || nc == 1)
    {
      npts = nr > nc ? nr : nc;
      nsamples = 1;
    }
  else
    {
      npts = nr;
      nsamples = nc;
    }

  octave_idx_type nn = 4*npts+15;

  Array<FloatComplex> wsave (dim_vector (nn, 1));
  FloatComplex *pwsave = wsave.fortran_vec ();

  retval = *this;
  FloatComplex *tmp_data = retval.fortran_vec ();

  F77_FUNC (cffti, CFFTI) (npts, pwsave);

  for (octave_idx_type j = 0; j < nsamples; j++)
    {
      octave_quit ();

      F77_FUNC (cfftf, CFFTF) (npts, &tmp_data[npts*j], pwsave);
    }

  return retval;
}

FloatComplexMatrix
FloatComplexMatrix::ifourier (void) const
{
  FloatComplexMatrix retval;

  octave_idx_type nr = rows ();
  octave_idx_type nc = cols ();

  octave_idx_type npts, nsamples;

  if (nr == 1 || nc == 1)
    {
      npts = nr > nc ? nr : nc;
      nsamples = 1;
    }
  else
    {
      npts = nr;
      nsamples = nc;
    }

  octave_idx_type nn = 4*npts+15;

  Array<FloatComplex> wsave (dim_vector (nn, 1));
  FloatComplex *pwsave = wsave.fortran_vec ();

  retval = *this;
  FloatComplex *tmp_data = retval.fortran_vec ();

  F77_FUNC (cffti, CFFTI) (npts, pwsave);

  for (octave_idx_type j = 0; j < nsamples; j++)
    {
      octave_quit ();

      F77_FUNC (cfftb, CFFTB) (npts, &tmp_data[npts*j], pwsave);
    }

  for (octave_idx_type j = 0; j < npts*nsamples; j++)
    tmp_data[j] = tmp_data[j] / static_cast<float> (npts);

  return retval;
}

FloatComplexMatrix
FloatComplexMatrix::fourier2d (void) const
{
  FloatComplexMatrix retval;

  octave_idx_type nr = rows ();
  octave_idx_type nc = cols ();

  octave_idx_type npts, nsamples;

  if (nr == 1 || nc == 1)
    {
      npts = nr > nc ? nr : nc;
      nsamples = 1;
    }
  else
    {
      npts = nr;
      nsamples = nc;
    }

  octave_idx_type nn = 4*npts+15;

  Array<FloatComplex> wsave (dim_vector (nn, 1));
  FloatComplex *pwsave = wsave.fortran_vec ();

  retval = *this;
  FloatComplex *tmp_data = retval.fortran_vec ();

  F77_FUNC (cffti, CFFTI) (npts, pwsave);

  for (octave_idx_type j = 0; j < nsamples; j++)
    {
      octave_quit ();

      F77_FUNC (cfftf, CFFTF) (npts, &tmp_data[npts*j], pwsave);
    }

  npts = nc;
  nsamples = nr;
  nn = 4*npts+15;

  wsave.resize (dim_vector (nn, 1));
  pwsave = wsave.fortran_vec ();

  Array<FloatComplex> tmp (dim_vector (npts, 1));
  FloatComplex *prow = tmp.fortran_vec ();

  F77_FUNC (cffti, CFFTI) (npts, pwsave);

  for (octave_idx_type j = 0; j < nsamples; j++)
    {
      octave_quit ();

      for (octave_idx_type i = 0; i < npts; i++)
        prow[i] = tmp_data[i*nr + j];

      F77_FUNC (cfftf, CFFTF) (npts, prow, pwsave);

      for (octave_idx_type i = 0; i < npts; i++)
        tmp_data[i*nr + j] = prow[i];
    }

  return retval;
}

FloatComplexMatrix
FloatComplexMatrix::ifourier2d (void) const
{
  FloatComplexMatrix retval;

  octave_idx_type nr = rows ();
  octave_idx_type nc = cols ();

  octave_idx_type npts, nsamples;

  if (nr == 1 || nc == 1)
    {
      npts = nr > nc ? nr : nc;
      nsamples = 1;
    }
  else
    {
      npts = nr;
      nsamples = nc;
    }

  octave_idx_type nn = 4*npts+15;

  Array<FloatComplex> wsave (dim_vector (nn, 1));
  FloatComplex *pwsave = wsave.fortran_vec ();

  retval = *this;
  FloatComplex *tmp_data = retval.fortran_vec ();

  F77_FUNC (cffti, CFFTI) (npts, pwsave);

  for (octave_idx_type j = 0; j < nsamples; j++)
    {
      octave_quit ();

      F77_FUNC (cfftb, CFFTB) (npts, &tmp_data[npts*j], pwsave);
    }

  for (octave_idx_type j = 0; j < npts*nsamples; j++)
    tmp_data[j] = tmp_data[j] / static_cast<float> (npts);

  npts = nc;
  nsamples = nr;
  nn = 4*npts+15;

  wsave.resize (dim_vector (nn, 1));
  pwsave = wsave.fortran_vec ();

  Array<FloatComplex> tmp (dim_vector (npts, 1));
  FloatComplex *prow = tmp.fortran_vec ();

  F77_FUNC (cffti, CFFTI) (npts, pwsave);

  for (octave_idx_type j = 0; j < nsamples; j++)
    {
      octave_quit ();

      for (octave_idx_type i = 0; i < npts; i++)
        prow[i] = tmp_data[i*nr + j];

      F77_FUNC (cfftb, CFFTB) (npts, prow, pwsave);

      for (octave_idx_type i = 0; i < npts; i++)
        tmp_data[i*nr + j] = prow[i] / static_cast<float> (npts);
    }

  return retval;
}

#endif

FloatComplexDET
FloatComplexMatrix::determinant (void) const
{
  octave_idx_type info;
  float rcon;
  return determinant (info, rcon, 0);
}

FloatComplexDET
FloatComplexMatrix::determinant (octave_idx_type& info) const
{
  float rcon;
  return determinant (info, rcon, 0);
}

FloatComplexDET
FloatComplexMatrix::determinant (octave_idx_type& info, float& rcon,
                                 bool calc_cond) const
{
  MatrixType mattype (*this);
  return determinant (mattype, info, rcon, calc_cond);
}

FloatComplexDET
FloatComplexMatrix::determinant (MatrixType& mattype,
                                 octave_idx_type& info, float& rcon,
                                 bool calc_cond) const
{
  FloatComplexDET retval (1.0);

  info = 0;
  rcon = 0.0;

  octave_idx_type nr = rows ();
  octave_idx_type nc = cols ();

  if (nr != nc)
    (*current_liboctave_error_handler) ("matrix must be square");

  volatile int typ = mattype.type ();

  // Even though the matrix is marked as singular (Rectangular), we may
  // still get a useful number from the LU factorization, because it always
  // completes.

  if (typ == MatrixType::Unknown)
    typ = mattype.type (*this);
  else if (typ == MatrixType::Rectangular)
    typ = MatrixType::Full;

  if (typ == MatrixType::Lower || typ == MatrixType::Upper)
    {
      for (octave_idx_type i = 0; i < nc; i++)
        retval *= elem (i,i);
    }
  else if (typ == MatrixType::Hermitian)
    {
      FloatComplexMatrix atmp = *this;
      FloatComplex *tmp_data = atmp.fortran_vec ();

      float anorm = 0;
      if (calc_cond) anorm = xnorm (*this, 1);

      char job = 'L';
      F77_XFCN (cpotrf, CPOTRF, (F77_CONST_CHAR_ARG2 (&job, 1), nr,
                                 F77_CMPLX_ARG (tmp_data), nr, info
                                 F77_CHAR_ARG_LEN (1)));

      if (info != 0)
        {
          rcon = 0.0;
          mattype.mark_as_unsymmetric ();
          typ = MatrixType::Full;
        }
      else
        {
          Array<FloatComplex> z (dim_vector (2 * nc, 1));
          FloatComplex *pz = z.fortran_vec ();
          Array<float> rz (dim_vector (nc, 1));
          float *prz = rz.fortran_vec ();

          F77_XFCN (cpocon, CPOCON, (F77_CONST_CHAR_ARG2 (&job, 1),
                                     nr, F77_CMPLX_ARG (tmp_data), nr, anorm,
                                     rcon, F77_CMPLX_ARG (pz), prz, info
                                     F77_CHAR_ARG_LEN (1)));

          if (info != 0)
            rcon = 0.0;

          for (octave_idx_type i = 0; i < nc; i++)
            retval *= atmp (i,i);

          retval = retval.square ();
        }
    }
  else if (typ != MatrixType::Full)
    (*current_liboctave_error_handler) ("det: invalid dense matrix type");

  if (typ == MatrixType::Full)
    {
      Array<octave_idx_type> ipvt (dim_vector (nr, 1));
      octave_idx_type *pipvt = ipvt.fortran_vec ();

      FloatComplexMatrix atmp = *this;
      FloatComplex *tmp_data = atmp.fortran_vec ();

      info = 0;

      // Calculate (always, see bug #45577) the norm of the matrix, for later use.
      float anorm = xnorm (*this, 1);

      // Work around bug #45577, LAPACK crashes Octave if norm is NaN
      if (octave::math::isnan (anorm))
        info = -1;
      else
        F77_XFCN (cgetrf, CGETRF, (nr, nr, F77_CMPLX_ARG (tmp_data), nr, pipvt, info));

      // Throw-away extra info LAPACK gives so as to not change output.
      rcon = 0.0;
      if (info != 0)
        {
          info = -1;
          retval = FloatComplexDET ();
        }
      else
        {
          if (calc_cond)
            {
              // Now calc the condition number for non-singular matrix.
              char job = '1';
              Array<FloatComplex> z (dim_vector (2 * nc, 1));
              FloatComplex *pz = z.fortran_vec ();
              Array<float> rz (dim_vector (2 * nc, 1));
              float *prz = rz.fortran_vec ();

              F77_XFCN (cgecon, CGECON, (F77_CONST_CHAR_ARG2 (&job, 1),
                                         nc, F77_CMPLX_ARG (tmp_data), nr, anorm,
                                         rcon, F77_CMPLX_ARG (pz), prz, info
                                         F77_CHAR_ARG_LEN (1)));
            }

          if (info != 0)
            {
              info = -1;
              retval = FloatComplexDET ();
            }
          else
            {
              for (octave_idx_type i = 0; i < nc; i++)
                {
                  FloatComplex c = atmp(i,i);
                  retval *= (ipvt(i) != (i+1)) ? -c : c;
                }
            }
        }
    }

  return retval;
}

float
FloatComplexMatrix::rcond (void) const
{
  MatrixType mattype (*this);
  return rcond (mattype);
}

float
FloatComplexMatrix::rcond (MatrixType &mattype) const
{
  float rcon = octave::numeric_limits<float>::NaN ();
  octave_idx_type nr = rows ();
  octave_idx_type nc = cols ();

  if (nr != nc)
    (*current_liboctave_error_handler) ("matrix must be square");

  if (nr == 0 || nc == 0)
    rcon = octave::numeric_limits<float>::Inf ();
  else
    {
      volatile int typ = mattype.type ();

      if (typ == MatrixType::Unknown)
        typ = mattype.type (*this);

      // Only calculate the condition number for LU/Cholesky
      if (typ == MatrixType::Upper)
        {
          const FloatComplex *tmp_data = fortran_vec ();
          octave_idx_type info = 0;
          char norm = '1';
          char uplo = 'U';
          char dia = 'N';

          Array<FloatComplex> z (dim_vector (2 * nc, 1));
          FloatComplex *pz = z.fortran_vec ();
          Array<float> rz (dim_vector (nc, 1));
          float *prz = rz.fortran_vec ();

          F77_XFCN (ctrcon, CTRCON, (F77_CONST_CHAR_ARG2 (&norm, 1),
                                     F77_CONST_CHAR_ARG2 (&uplo, 1),
                                     F77_CONST_CHAR_ARG2 (&dia, 1),
                                     nr, F77_CONST_CMPLX_ARG (tmp_data), nr, rcon,
                                     F77_CMPLX_ARG (pz), prz, info
                                     F77_CHAR_ARG_LEN (1)
                                     F77_CHAR_ARG_LEN (1)
                                     F77_CHAR_ARG_LEN (1)));

          if (info != 0)
            rcon = 0;
        }
      else if  (typ == MatrixType::Permuted_Upper)
        (*current_liboctave_error_handler)
          ("permuted triangular matrix not implemented");
      else if (typ == MatrixType::Lower)
        {
          const FloatComplex *tmp_data = fortran_vec ();
          octave_idx_type info = 0;
          char norm = '1';
          char uplo = 'L';
          char dia = 'N';

          Array<FloatComplex> z (dim_vector (2 * nc, 1));
          FloatComplex *pz = z.fortran_vec ();
          Array<float> rz (dim_vector (nc, 1));
          float *prz = rz.fortran_vec ();

          F77_XFCN (ctrcon, CTRCON, (F77_CONST_CHAR_ARG2 (&norm, 1),
                                     F77_CONST_CHAR_ARG2 (&uplo, 1),
                                     F77_CONST_CHAR_ARG2 (&dia, 1),
                                     nr, F77_CONST_CMPLX_ARG (tmp_data), nr, rcon,
                                     F77_CMPLX_ARG (pz), prz, info
                                     F77_CHAR_ARG_LEN (1)
                                     F77_CHAR_ARG_LEN (1)
                                     F77_CHAR_ARG_LEN (1)));

          if (info != 0)
            rcon = 0.0;
        }
      else if (typ == MatrixType::Permuted_Lower)
        (*current_liboctave_error_handler)
          ("permuted triangular matrix not implemented");
      else if (typ == MatrixType::Full || typ == MatrixType::Hermitian)
        {
          float anorm = -1.0;

          if (typ == MatrixType::Hermitian)
            {
              octave_idx_type info = 0;
              char job = 'L';

              FloatComplexMatrix atmp = *this;
              FloatComplex *tmp_data = atmp.fortran_vec ();

              anorm = atmp.abs().sum().
                      row(static_cast<octave_idx_type>(0)).max();

              F77_XFCN (cpotrf, CPOTRF, (F77_CONST_CHAR_ARG2 (&job, 1), nr,
                                         F77_CMPLX_ARG (tmp_data), nr, info
                                         F77_CHAR_ARG_LEN (1)));

              if (info != 0)
                {
                  rcon = 0.0;

                  mattype.mark_as_unsymmetric ();
                  typ = MatrixType::Full;
                }
              else
                {
                  Array<FloatComplex> z (dim_vector (2 * nc, 1));
                  FloatComplex *pz = z.fortran_vec ();
                  Array<float> rz (dim_vector (nc, 1));
                  float *prz = rz.fortran_vec ();

                  F77_XFCN (cpocon, CPOCON, (F77_CONST_CHAR_ARG2 (&job, 1),
                                             nr, F77_CMPLX_ARG (tmp_data), nr, anorm,
                                             rcon, F77_CMPLX_ARG (pz), prz, info
                                             F77_CHAR_ARG_LEN (1)));

                  if (info != 0)
                    rcon = 0.0;
                }
            }

          if (typ == MatrixType::Full)
            {
              octave_idx_type info = 0;

              FloatComplexMatrix atmp = *this;
              FloatComplex *tmp_data = atmp.fortran_vec ();

              Array<octave_idx_type> ipvt (dim_vector (nr, 1));
              octave_idx_type *pipvt = ipvt.fortran_vec ();

              if (anorm < 0.)
                anorm = atmp.abs ().sum ().
                        row(static_cast<octave_idx_type>(0)).max ();

              Array<FloatComplex> z (dim_vector (2 * nc, 1));
              FloatComplex *pz = z.fortran_vec ();
              Array<float> rz (dim_vector (2 * nc, 1));
              float *prz = rz.fortran_vec ();

              // Work around bug #45577, LAPACK crashes Octave if norm is NaN
              if (octave::math::isnan (anorm))
                info = -1;
              else
                F77_XFCN (cgetrf, CGETRF, (nr, nr, F77_CMPLX_ARG (tmp_data), nr, pipvt, info));

              if (info != 0)
                {
                  rcon = 0.0;
                  mattype.mark_as_rectangular ();
                }
              else
                {
                  char job = '1';
                  F77_XFCN (cgecon, CGECON, (F77_CONST_CHAR_ARG2 (&job, 1),
                                             nc, F77_CMPLX_ARG (tmp_data), nr, anorm,
                                             rcon, F77_CMPLX_ARG (pz), prz, info
                                             F77_CHAR_ARG_LEN (1)));

                  if (info != 0)
                    rcon = 0.0;
                }
            }
        }
      else
        rcon = 0.0;
    }

  return rcon;
}

FloatComplexMatrix
FloatComplexMatrix::utsolve (MatrixType &mattype, const FloatComplexMatrix& b,
                             octave_idx_type& info, float& rcon,
                             solve_singularity_handler sing_handler,
                             bool calc_cond, blas_trans_type transt) const
{
  FloatComplexMatrix retval;

  octave_idx_type nr = rows ();
  octave_idx_type nc = cols ();

  if (nr != b.rows ())
    (*current_liboctave_error_handler)
      ("matrix dimension mismatch solution of linear equations");

  if (nr == 0 || nc == 0 || b.cols () == 0)
    retval = FloatComplexMatrix (nc, b.cols (), FloatComplex (0.0, 0.0));
  else
    {
      volatile int typ = mattype.type ();

      if (typ == MatrixType::Permuted_Upper || typ == MatrixType::Upper)
        {
          octave_idx_type b_nc = b.cols ();
          rcon = 1.;
          info = 0;

          if (typ == MatrixType::Permuted_Upper)
            (*current_liboctave_error_handler)
              ("permuted triangular matrix not implemented");
          else
            {
              const FloatComplex *tmp_data = fortran_vec ();

              retval = b;
              FloatComplex *result = retval.fortran_vec ();

              char uplo = 'U';
              char trans = get_blas_char (transt);
              char dia = 'N';

              F77_XFCN (ctrtrs, CTRTRS, (F77_CONST_CHAR_ARG2 (&uplo, 1),
                                         F77_CONST_CHAR_ARG2 (&trans, 1),
                                         F77_CONST_CHAR_ARG2 (&dia, 1),
                                         nr, b_nc, F77_CONST_CMPLX_ARG (tmp_data), nr,
                                         F77_CMPLX_ARG (result), nr, info
                                         F77_CHAR_ARG_LEN (1)
                                         F77_CHAR_ARG_LEN (1)
                                         F77_CHAR_ARG_LEN (1)));

              if (calc_cond)
                {
                  char norm = '1';
                  uplo = 'U';
                  dia = 'N';

                  Array<FloatComplex> z (dim_vector (2 * nc, 1));
                  FloatComplex *pz = z.fortran_vec ();
                  Array<float> rz (dim_vector (nc, 1));
                  float *prz = rz.fortran_vec ();

                  F77_XFCN (ctrcon, CTRCON, (F77_CONST_CHAR_ARG2 (&norm, 1),
                                             F77_CONST_CHAR_ARG2 (&uplo, 1),
                                             F77_CONST_CHAR_ARG2 (&dia, 1),
                                             nr, F77_CONST_CMPLX_ARG (tmp_data), nr, rcon,
                                             F77_CMPLX_ARG (pz), prz, info
                                             F77_CHAR_ARG_LEN (1)
                                             F77_CHAR_ARG_LEN (1)
                                             F77_CHAR_ARG_LEN (1)));

                  if (info != 0)
                    info = -2;

                  volatile float rcond_plus_one = rcon + 1.0;

                  if (rcond_plus_one == 1.0 || octave::math::isnan (rcon))
                    {
                      info = -2;

                      if (sing_handler)
                        sing_handler (rcon);
                      else
                        warn_singular_matrix (rcon);
                    }
                }
            }
        }
      else
        (*current_liboctave_error_handler) ("incorrect matrix type");
    }

  return retval;
}

FloatComplexMatrix
FloatComplexMatrix::ltsolve (MatrixType &mattype, const FloatComplexMatrix& b,
                             octave_idx_type& info, float& rcon,
                             solve_singularity_handler sing_handler,
                             bool calc_cond, blas_trans_type transt) const
{
  FloatComplexMatrix retval;

  octave_idx_type nr = rows ();
  octave_idx_type nc = cols ();

  if (nr != b.rows ())
    (*current_liboctave_error_handler)
      ("matrix dimension mismatch solution of linear equations");

  if (nr == 0 || nc == 0 || b.cols () == 0)
    retval = FloatComplexMatrix (nc, b.cols (), FloatComplex (0.0, 0.0));
  else
    {
      volatile int typ = mattype.type ();

      if (typ == MatrixType::Permuted_Lower || typ == MatrixType::Lower)
        {
          octave_idx_type b_nc = b.cols ();
          rcon = 1.;
          info = 0;

          if (typ == MatrixType::Permuted_Lower)
            (*current_liboctave_error_handler)
              ("permuted triangular matrix not implemented");
          else
            {
              const FloatComplex *tmp_data = fortran_vec ();

              retval = b;
              FloatComplex *result = retval.fortran_vec ();

              char uplo = 'L';
              char trans = get_blas_char (transt);
              char dia = 'N';

              F77_XFCN (ctrtrs, CTRTRS, (F77_CONST_CHAR_ARG2 (&uplo, 1),
                                         F77_CONST_CHAR_ARG2 (&trans, 1),
                                         F77_CONST_CHAR_ARG2 (&dia, 1),
                                         nr, b_nc, F77_CONST_CMPLX_ARG (tmp_data), nr,
                                         F77_CMPLX_ARG (result), nr, info
                                         F77_CHAR_ARG_LEN (1)
                                         F77_CHAR_ARG_LEN (1)
                                         F77_CHAR_ARG_LEN (1)));

              if (calc_cond)
                {
                  char norm = '1';
                  uplo = 'L';
                  dia = 'N';

                  Array<FloatComplex> z (dim_vector (2 * nc, 1));
                  FloatComplex *pz = z.fortran_vec ();
                  Array<float> rz (dim_vector (nc, 1));
                  float *prz = rz.fortran_vec ();

                  F77_XFCN (ctrcon, CTRCON, (F77_CONST_CHAR_ARG2 (&norm, 1),
                                             F77_CONST_CHAR_ARG2 (&uplo, 1),
                                             F77_CONST_CHAR_ARG2 (&dia, 1),
                                             nr, F77_CONST_CMPLX_ARG (tmp_data), nr, rcon,
                                             F77_CMPLX_ARG (pz), prz, info
                                             F77_CHAR_ARG_LEN (1)
                                             F77_CHAR_ARG_LEN (1)
                                             F77_CHAR_ARG_LEN (1)));

                  if (info != 0)
                    info = -2;

                  volatile float rcond_plus_one = rcon + 1.0;

                  if (rcond_plus_one == 1.0 || octave::math::isnan (rcon))
                    {
                      info = -2;

                      if (sing_handler)
                        sing_handler (rcon);
                      else
                        warn_singular_matrix (rcon);
                    }
                }
            }
        }
      else
        (*current_liboctave_error_handler) ("incorrect matrix type");
    }

  return retval;
}

FloatComplexMatrix
FloatComplexMatrix::fsolve (MatrixType &mattype, const FloatComplexMatrix& b,
                            octave_idx_type& info, float& rcon,
                            solve_singularity_handler sing_handler,
                            bool calc_cond) const
{
  FloatComplexMatrix retval;

  octave_idx_type nr = rows ();
  octave_idx_type nc = cols ();

  if (nr != nc || nr != b.rows ())
    (*current_liboctave_error_handler)
      ("matrix dimension mismatch solution of linear equations");

  if (nr == 0 || b.cols () == 0)
    retval = FloatComplexMatrix (nc, b.cols (), FloatComplex (0.0, 0.0));
  else
    {
      volatile int typ = mattype.type ();

      // Calculate the norm of the matrix, for later use.
      float anorm = -1.;

      if (typ == MatrixType::Hermitian)
        {
          info = 0;
          char job = 'L';

          FloatComplexMatrix atmp = *this;
          FloatComplex *tmp_data = atmp.fortran_vec ();

          anorm = atmp.abs().sum().row(static_cast<octave_idx_type>(0)).max();

          F77_XFCN (cpotrf, CPOTRF, (F77_CONST_CHAR_ARG2 (&job, 1), nr,
                                     F77_CMPLX_ARG (tmp_data), nr, info
                                     F77_CHAR_ARG_LEN (1)));

          // Throw-away extra info LAPACK gives so as to not change output.
          rcon = 0.0;
          if (info != 0)
            {
              info = -2;

              mattype.mark_as_unsymmetric ();
              typ = MatrixType::Full;
            }
          else
            {
              if (calc_cond)
                {
                  Array<FloatComplex> z (dim_vector (2 * nc, 1));
                  FloatComplex *pz = z.fortran_vec ();
                  Array<float> rz (dim_vector (nc, 1));
                  float *prz = rz.fortran_vec ();

                  F77_XFCN (cpocon, CPOCON, (F77_CONST_CHAR_ARG2 (&job, 1),
                                             nr, F77_CMPLX_ARG (tmp_data), nr, anorm,
                                             rcon, F77_CMPLX_ARG (pz), prz, info
                                             F77_CHAR_ARG_LEN (1)));

                  if (info != 0)
                    info = -2;

                  volatile float rcond_plus_one = rcon + 1.0;

                  if (rcond_plus_one == 1.0 || octave::math::isnan (rcon))
                    {
                      info = -2;

                      if (sing_handler)
                        sing_handler (rcon);
                      else
                        warn_singular_matrix (rcon);
                    }
                }

              if (info == 0)
                {
                  retval = b;
                  FloatComplex *result = retval.fortran_vec ();

                  octave_idx_type b_nc = b.cols ();

                  F77_XFCN (cpotrs, CPOTRS, (F77_CONST_CHAR_ARG2 (&job, 1),
                                             nr, b_nc, F77_CMPLX_ARG (tmp_data), nr,
                                             F77_CMPLX_ARG (result), b.rows (), info
                                             F77_CHAR_ARG_LEN (1)));
                }
              else
                {
                  mattype.mark_as_unsymmetric ();
                  typ = MatrixType::Full;
                }
            }
        }

      if (typ == MatrixType::Full)
        {
          info = 0;

          Array<octave_idx_type> ipvt (dim_vector (nr, 1));
          octave_idx_type *pipvt = ipvt.fortran_vec ();

          FloatComplexMatrix atmp = *this;
          FloatComplex *tmp_data = atmp.fortran_vec ();

          Array<FloatComplex> z (dim_vector (2 * nc, 1));
          FloatComplex *pz = z.fortran_vec ();
          Array<float> rz (dim_vector (2 * nc, 1));
          float *prz = rz.fortran_vec ();

          // Calculate the norm of the matrix, for later use.
          if (anorm < 0.)
            anorm = atmp.abs ().sum ().row (static_cast<octave_idx_type>(0))
                    .max ();

          // Work around bug #45577, LAPACK crashes Octave if norm is NaN
          // and bug #46330, segfault with matrices containing Inf & NaN
          if (octave::math::isnan (anorm) || octave::math::isinf (anorm))
            info = -2;
          else
            F77_XFCN (cgetrf, CGETRF, (nr, nr, F77_CMPLX_ARG (tmp_data), nr, pipvt, info));

          // Throw-away extra info LAPACK gives so as to not change output.
          rcon = 0.0;
          if (info != 0)
            {
              info = -2;

              if (sing_handler)
                sing_handler (rcon);
              else
                warn_singular_matrix ();

              mattype.mark_as_rectangular ();
            }
          else
            {
              if (calc_cond)
                {
                  // Now calculate the condition number for
                  // non-singular matrix.
                  char job = '1';
                  F77_XFCN (cgecon, CGECON, (F77_CONST_CHAR_ARG2 (&job, 1),
                                             nc, F77_CMPLX_ARG (tmp_data), nr, anorm,
                                             rcon, F77_CMPLX_ARG (pz), prz, info
                                             F77_CHAR_ARG_LEN (1)));

                  if (info != 0)
                    info = -2;

                  volatile float rcond_plus_one = rcon + 1.0;

                  if (rcond_plus_one == 1.0 || octave::math::isnan (rcon))
                    {
                      info = -2;

                      if (sing_handler)
                        sing_handler (rcon);
                      else
                        warn_singular_matrix (rcon);
                    }
                }

              if (info == 0)
                {
                  retval = b;
                  FloatComplex *result = retval.fortran_vec ();

                  octave_idx_type b_nc = b.cols ();

                  char job = 'N';
                  F77_XFCN (cgetrs, CGETRS, (F77_CONST_CHAR_ARG2 (&job, 1),
                                             nr, b_nc, F77_CMPLX_ARG (tmp_data), nr,
                                             pipvt, F77_CMPLX_ARG (result), b.rows (), info
                                             F77_CHAR_ARG_LEN (1)));
                }
              else
                mattype.mark_as_rectangular ();
            }
        }

      if (octave::math::isinf (anorm))
        {
          retval = FloatComplexMatrix (b.rows (), b.cols (),
                                       FloatComplex (0, 0));
          mattype.mark_as_full ();
        }
    }

  return retval;
}

FloatComplexMatrix
FloatComplexMatrix::solve (MatrixType &typ, const FloatMatrix& b) const
{
  octave_idx_type info;
  float rcon;
  return solve (typ, b, info, rcon, 0);
}

FloatComplexMatrix
FloatComplexMatrix::solve (MatrixType &typ, const FloatMatrix& b,
                           octave_idx_type& info) const
{
  float rcon;
  return solve (typ, b, info, rcon, 0);
}

FloatComplexMatrix
FloatComplexMatrix::solve (MatrixType &typ, const FloatMatrix& b,
                           octave_idx_type& info,
                           float& rcon) const
{
  return solve (typ, b, info, rcon, 0);
}

FloatComplexMatrix
FloatComplexMatrix::solve (MatrixType &typ, const FloatMatrix& b,
                           octave_idx_type& info,
                           float& rcon, solve_singularity_handler sing_handler,
                           bool singular_fallback, blas_trans_type transt) const
{
  FloatComplexMatrix tmp (b);
  return solve (typ, tmp, info, rcon, sing_handler, singular_fallback, transt);
}

FloatComplexMatrix
FloatComplexMatrix::solve (MatrixType &typ, const FloatComplexMatrix& b) const
{
  octave_idx_type info;
  float rcon;
  return solve (typ, b, info, rcon, 0);
}

FloatComplexMatrix
FloatComplexMatrix::solve (MatrixType &typ, const FloatComplexMatrix& b,
                           octave_idx_type& info) const
{
  float rcon;
  return solve (typ, b, info, rcon, 0);
}

FloatComplexMatrix
FloatComplexMatrix::solve (MatrixType &typ, const FloatComplexMatrix& b,
                           octave_idx_type& info, float& rcon) const
{
  return solve (typ, b, info, rcon, 0);
}

FloatComplexMatrix
FloatComplexMatrix::solve (MatrixType &mattype, const FloatComplexMatrix& b,
                           octave_idx_type& info, float& rcon,
                           solve_singularity_handler sing_handler,
                           bool singular_fallback, blas_trans_type transt) const
{
  FloatComplexMatrix retval;
  int typ = mattype.type ();

  if (typ == MatrixType::Unknown)
    typ = mattype.type (*this);

  // Only calculate the condition number for LU/Cholesky
  if (typ == MatrixType::Upper || typ == MatrixType::Permuted_Upper)
    retval = utsolve (mattype, b, info, rcon, sing_handler, true, transt);
  else if (typ == MatrixType::Lower || typ == MatrixType::Permuted_Lower)
    retval = ltsolve (mattype, b, info, rcon, sing_handler, true, transt);
  else if (transt == blas_trans)
    return transpose ().solve (mattype, b, info, rcon, sing_handler,
                               singular_fallback);
  else if (transt == blas_conj_trans)
    retval = hermitian ().solve (mattype, b, info, rcon, sing_handler,
                                 singular_fallback);
  else if (typ == MatrixType::Full || typ == MatrixType::Hermitian)
    retval = fsolve (mattype, b, info, rcon, sing_handler, true);
  else if (typ != MatrixType::Rectangular)
    (*current_liboctave_error_handler) ("unknown matrix type");

  // Rectangular or one of the above solvers flags a singular matrix
  if (singular_fallback && mattype.type () == MatrixType::Rectangular)
    {
      octave_idx_type rank;
      retval = lssolve (b, info, rank, rcon);
    }

  return retval;
}

FloatComplexColumnVector
FloatComplexMatrix::solve (MatrixType &typ, const FloatColumnVector& b) const
{
  octave_idx_type info;
  float rcon;
  return solve (typ, FloatComplexColumnVector (b), info, rcon, 0);
}

FloatComplexColumnVector
FloatComplexMatrix::solve (MatrixType &typ, const FloatColumnVector& b,
                           octave_idx_type& info) const
{
  float rcon;
  return solve (typ, FloatComplexColumnVector (b), info, rcon, 0);
}

FloatComplexColumnVector
FloatComplexMatrix::solve (MatrixType &typ, const FloatColumnVector& b,
                           octave_idx_type& info, float& rcon) const
{
  return solve (typ, FloatComplexColumnVector (b), info, rcon, 0);
}

FloatComplexColumnVector
FloatComplexMatrix::solve (MatrixType &typ, const FloatColumnVector& b,
                           octave_idx_type& info, float& rcon,
                           solve_singularity_handler sing_handler,
                           blas_trans_type transt) const
{
  return solve (typ, FloatComplexColumnVector (b), info, rcon, sing_handler,
                transt);
}

FloatComplexColumnVector
FloatComplexMatrix::solve (MatrixType &typ,
                           const FloatComplexColumnVector& b) const
{
  octave_idx_type info;
  float rcon;
  return solve (typ, b, info, rcon, 0);
}

FloatComplexColumnVector
FloatComplexMatrix::solve (MatrixType &typ, const FloatComplexColumnVector& b,
                           octave_idx_type& info) const
{
  float rcon;
  return solve (typ, b, info, rcon, 0);
}

FloatComplexColumnVector
FloatComplexMatrix::solve (MatrixType &typ, const FloatComplexColumnVector& b,
                           octave_idx_type& info, float& rcon) const
{
  return solve (typ, b, info, rcon, 0);
}

FloatComplexColumnVector
FloatComplexMatrix::solve (MatrixType &typ, const FloatComplexColumnVector& b,
                           octave_idx_type& info, float& rcon,
                           solve_singularity_handler sing_handler,
                           blas_trans_type transt) const
{

  FloatComplexMatrix tmp (b);
  tmp = solve (typ, tmp, info, rcon, sing_handler, true, transt);
  return tmp.column (static_cast<octave_idx_type> (0));
}

FloatComplexMatrix
FloatComplexMatrix::solve (const FloatMatrix& b) const
{
  octave_idx_type info;
  float rcon;
  return solve (b, info, rcon, 0);
}

FloatComplexMatrix
FloatComplexMatrix::solve (const FloatMatrix& b, octave_idx_type& info) const
{
  float rcon;
  return solve (b, info, rcon, 0);
}

FloatComplexMatrix
FloatComplexMatrix::solve (const FloatMatrix& b, octave_idx_type& info,
                           float& rcon) const
{
  return solve (b, info, rcon, 0);
}

FloatComplexMatrix
FloatComplexMatrix::solve (const FloatMatrix& b, octave_idx_type& info,
                           float& rcon,
                           solve_singularity_handler sing_handler,
                           blas_trans_type transt) const
{
  FloatComplexMatrix tmp (b);
  return solve (tmp, info, rcon, sing_handler, transt);
}

FloatComplexMatrix
FloatComplexMatrix::solve (const FloatComplexMatrix& b) const
{
  octave_idx_type info;
  float rcon;
  return solve (b, info, rcon, 0);
}

FloatComplexMatrix
FloatComplexMatrix::solve (const FloatComplexMatrix& b,
                           octave_idx_type& info) const
{
  float rcon;
  return solve (b, info, rcon, 0);
}

FloatComplexMatrix
FloatComplexMatrix::solve (const FloatComplexMatrix& b, octave_idx_type& info,
                           float& rcon) const
{
  return solve (b, info, rcon, 0);
}

FloatComplexMatrix
FloatComplexMatrix::solve (const FloatComplexMatrix& b, octave_idx_type& info,
                           float& rcon,
                           solve_singularity_handler sing_handler,
                           blas_trans_type transt) const
{
  MatrixType mattype (*this);
  return solve (mattype, b, info, rcon, sing_handler, true, transt);
}

FloatComplexColumnVector
FloatComplexMatrix::solve (const FloatColumnVector& b) const
{
  octave_idx_type info;
  float rcon;
  return solve (FloatComplexColumnVector (b), info, rcon, 0);
}

FloatComplexColumnVector
FloatComplexMatrix::solve (const FloatColumnVector& b,
                           octave_idx_type& info) const
{
  float rcon;
  return solve (FloatComplexColumnVector (b), info, rcon, 0);
}

FloatComplexColumnVector
FloatComplexMatrix::solve (const FloatColumnVector& b, octave_idx_type& info,
                           float& rcon) const
{
  return solve (FloatComplexColumnVector (b), info, rcon, 0);
}

FloatComplexColumnVector
FloatComplexMatrix::solve (const FloatColumnVector& b, octave_idx_type& info,
                           float& rcon,
                           solve_singularity_handler sing_handler,
                           blas_trans_type transt) const
{
  return solve (FloatComplexColumnVector (b), info, rcon, sing_handler, transt);
}

FloatComplexColumnVector
FloatComplexMatrix::solve (const FloatComplexColumnVector& b) const
{
  octave_idx_type info;
  float rcon;
  return solve (b, info, rcon, 0);
}

FloatComplexColumnVector
FloatComplexMatrix::solve (const FloatComplexColumnVector& b,
                           octave_idx_type& info) const
{
  float rcon;
  return solve (b, info, rcon, 0);
}

FloatComplexColumnVector
FloatComplexMatrix::solve (const FloatComplexColumnVector& b,
                           octave_idx_type& info,
                           float& rcon) const
{
  return solve (b, info, rcon, 0);
}

FloatComplexColumnVector
FloatComplexMatrix::solve (const FloatComplexColumnVector& b,
                           octave_idx_type& info,
                           float& rcon,
                           solve_singularity_handler sing_handler,
                           blas_trans_type transt) const
{
  MatrixType mattype (*this);
  return solve (mattype, b, info, rcon, sing_handler, transt);
}

FloatComplexMatrix
FloatComplexMatrix::lssolve (const FloatMatrix& b) const
{
  octave_idx_type info;
  octave_idx_type rank;
  float rcon;
  return lssolve (FloatComplexMatrix (b), info, rank, rcon);
}

FloatComplexMatrix
FloatComplexMatrix::lssolve (const FloatMatrix& b, octave_idx_type& info) const
{
  octave_idx_type rank;
  float rcon;
  return lssolve (FloatComplexMatrix (b), info, rank, rcon);
}

FloatComplexMatrix
FloatComplexMatrix::lssolve (const FloatMatrix& b, octave_idx_type& info,
                             octave_idx_type& rank) const
{
  float rcon;
  return lssolve (FloatComplexMatrix (b), info, rank, rcon);
}

FloatComplexMatrix
FloatComplexMatrix::lssolve (const FloatMatrix& b, octave_idx_type& info,
                             octave_idx_type& rank, float& rcon) const
{
  return lssolve (FloatComplexMatrix (b), info, rank, rcon);
}

FloatComplexMatrix
FloatComplexMatrix::lssolve (const FloatComplexMatrix& b) const
{
  octave_idx_type info;
  octave_idx_type rank;
  float rcon;
  return lssolve (b, info, rank, rcon);
}

FloatComplexMatrix
FloatComplexMatrix::lssolve (const FloatComplexMatrix& b,
                             octave_idx_type& info) const
{
  octave_idx_type rank;
  float rcon;
  return lssolve (b, info, rank, rcon);
}

FloatComplexMatrix
FloatComplexMatrix::lssolve (const FloatComplexMatrix& b, octave_idx_type& info,
                             octave_idx_type& rank) const
{
  float rcon;
  return lssolve (b, info, rank, rcon);
}

FloatComplexMatrix
FloatComplexMatrix::lssolve (const FloatComplexMatrix& b, octave_idx_type& info,
                             octave_idx_type& rank, float& rcon) const
{
  FloatComplexMatrix retval;

  octave_idx_type nrhs = b.cols ();

  octave_idx_type m = rows ();
  octave_idx_type n = cols ();

  if (m != b.rows ())
    (*current_liboctave_error_handler)
      ("matrix dimension mismatch solution of linear equations");

  if (m== 0 || n == 0 || b.cols () == 0)
    retval = FloatComplexMatrix (n, b.cols (), FloatComplex (0.0, 0.0));
  else
    {
      volatile octave_idx_type minmn = (m < n ? m : n);
      octave_idx_type maxmn = m > n ? m : n;
      rcon = -1.0;

      if (m != n)
        {
          retval = FloatComplexMatrix (maxmn, nrhs);

          for (octave_idx_type j = 0; j < nrhs; j++)
            for (octave_idx_type i = 0; i < m; i++)
              retval.elem (i, j) = b.elem (i, j);
        }
      else
        retval = b;

      FloatComplexMatrix atmp = *this;
      FloatComplex *tmp_data = atmp.fortran_vec ();

      FloatComplex *pretval = retval.fortran_vec ();
      Array<float> s (dim_vector (minmn, 1));
      float *ps = s.fortran_vec ();

      // Ask ZGELSD what the dimension of WORK should be.
      octave_idx_type lwork = -1;

      Array<FloatComplex> work (dim_vector (1, 1));

      octave_idx_type smlsiz;
      F77_FUNC (xilaenv, XILAENV) (9, F77_CONST_CHAR_ARG2 ("CGELSD", 6),
                                   F77_CONST_CHAR_ARG2 (" ", 1),
                                   0, 0, 0, 0, smlsiz
                                   F77_CHAR_ARG_LEN (6)
                                   F77_CHAR_ARG_LEN (1));

      octave_idx_type mnthr;
      F77_FUNC (xilaenv, XILAENV) (6, F77_CONST_CHAR_ARG2 ("CGELSD", 6),
                                   F77_CONST_CHAR_ARG2 (" ", 1),
                                   m, n, nrhs, -1, mnthr
                                   F77_CHAR_ARG_LEN (6)
                                   F77_CHAR_ARG_LEN (1));

      // We compute the size of rwork and iwork because ZGELSD in
      // older versions of LAPACK does not return them on a query
      // call.
      float dminmn = static_cast<float> (minmn);
      float dsmlsizp1 = static_cast<float> (smlsiz+1);
      float tmp = octave::math::log2 (dminmn / dsmlsizp1);

      octave_idx_type nlvl = static_cast<octave_idx_type> (tmp) + 1;
      if (nlvl < 0)
        nlvl = 0;

      octave_idx_type lrwork = minmn*(10 + 2*smlsiz + 8*nlvl)
                               + 3*smlsiz*nrhs
                               + std::max ((smlsiz+1)*(smlsiz+1),
                                           n*(1+nrhs) + 2*nrhs);
      if (lrwork < 1)
        lrwork = 1;
      Array<float> rwork (dim_vector (lrwork, 1));
      float *prwork = rwork.fortran_vec ();

      octave_idx_type liwork = 3 * minmn * nlvl + 11 * minmn;
      if (liwork < 1)
        liwork = 1;
      Array<octave_idx_type> iwork (dim_vector (liwork, 1));
      octave_idx_type* piwork = iwork.fortran_vec ();

      F77_XFCN (cgelsd, CGELSD, (m, n, nrhs, F77_CMPLX_ARG (tmp_data), m, F77_CMPLX_ARG (pretval), maxmn,
                                 ps, rcon, rank, F77_CMPLX_ARG (work.fortran_vec ()),
                                 lwork, prwork, piwork, info));

      // The workspace query is broken in at least LAPACK 3.0.0
      // through 3.1.1 when n >= mnthr.  The obtuse formula below
      // should provide sufficient workspace for ZGELSD to operate
      // efficiently.
      if (n > m && n >= mnthr)
        {
          octave_idx_type addend = m;

          if (2*m-4 > addend)
            addend = 2*m-4;

          if (nrhs > addend)
            addend = nrhs;

          if (n-3*m > addend)
            addend = n-3*m;

          const octave_idx_type lworkaround = 4*m + m*m + addend;

          if (std::real (work(0)) < lworkaround)
            work(0) = lworkaround;
        }
      else if (m >= n)
        {
          octave_idx_type lworkaround = 2*m + m*nrhs;

          if (std::real (work(0)) < lworkaround)
            work(0) = lworkaround;
        }

      lwork = static_cast<octave_idx_type> (std::real (work(0)));
      work.resize (dim_vector (lwork, 1));

      F77_XFCN (cgelsd, CGELSD, (m, n, nrhs, F77_CMPLX_ARG (tmp_data), m, F77_CMPLX_ARG (pretval),
                                 maxmn, ps, rcon, rank,
                                 F77_CMPLX_ARG (work.fortran_vec ()), lwork,
                                 prwork, piwork, info));

      if (s.elem (0) == 0.0)
        rcon = 0.0;
      else
        rcon = s.elem (minmn - 1) / s.elem (0);

      retval.resize (n, nrhs);
    }

  return retval;
}

FloatComplexColumnVector
FloatComplexMatrix::lssolve (const FloatColumnVector& b) const
{
  octave_idx_type info;
  octave_idx_type rank;
  float rcon;
  return lssolve (FloatComplexColumnVector (b), info, rank, rcon);
}

FloatComplexColumnVector
FloatComplexMatrix::lssolve (const FloatColumnVector& b,
                             octave_idx_type& info) const
{
  octave_idx_type rank;
  float rcon;
  return lssolve (FloatComplexColumnVector (b), info, rank, rcon);
}

FloatComplexColumnVector
FloatComplexMatrix::lssolve (const FloatColumnVector& b, octave_idx_type& info,
                             octave_idx_type& rank) const
{
  float rcon;
  return lssolve (FloatComplexColumnVector (b), info, rank, rcon);
}

FloatComplexColumnVector
FloatComplexMatrix::lssolve (const FloatColumnVector& b, octave_idx_type& info,
                             octave_idx_type& rank, float& rcon) const
{
  return lssolve (FloatComplexColumnVector (b), info, rank, rcon);
}

FloatComplexColumnVector
FloatComplexMatrix::lssolve (const FloatComplexColumnVector& b) const
{
  octave_idx_type info;
  octave_idx_type rank;
  float rcon;
  return lssolve (b, info, rank, rcon);
}

FloatComplexColumnVector
FloatComplexMatrix::lssolve (const FloatComplexColumnVector& b,
                             octave_idx_type& info) const
{
  octave_idx_type rank;
  float rcon;
  return lssolve (b, info, rank, rcon);
}

FloatComplexColumnVector
FloatComplexMatrix::lssolve (const FloatComplexColumnVector& b,
                             octave_idx_type& info,
                             octave_idx_type& rank) const
{
  float rcon;
  return lssolve (b, info, rank, rcon);

}

FloatComplexColumnVector
FloatComplexMatrix::lssolve (const FloatComplexColumnVector& b,
                             octave_idx_type& info,
                             octave_idx_type& rank, float& rcon) const
{
  FloatComplexColumnVector retval;

  octave_idx_type nrhs = 1;

  octave_idx_type m = rows ();
  octave_idx_type n = cols ();

  if (m != b.numel ())
    (*current_liboctave_error_handler)
      ("matrix dimension mismatch solution of linear equations");

  if (m == 0 || n == 0 || b.cols () == 0)
    retval = FloatComplexColumnVector (n, FloatComplex (0.0, 0.0));
  else
    {
      volatile octave_idx_type minmn = (m < n ? m : n);
      octave_idx_type maxmn = m > n ? m : n;
      rcon = -1.0;

      if (m != n)
        {
          retval = FloatComplexColumnVector (maxmn);

          for (octave_idx_type i = 0; i < m; i++)
            retval.elem (i) = b.elem (i);
        }
      else
        retval = b;

      FloatComplexMatrix atmp = *this;
      FloatComplex *tmp_data = atmp.fortran_vec ();

      FloatComplex *pretval = retval.fortran_vec ();
      Array<float> s (dim_vector (minmn, 1));
      float *ps = s.fortran_vec ();

      // Ask ZGELSD what the dimension of WORK should be.
      octave_idx_type lwork = -1;

      Array<FloatComplex> work (dim_vector (1, 1));

      octave_idx_type smlsiz;
      F77_FUNC (xilaenv, XILAENV) (9, F77_CONST_CHAR_ARG2 ("CGELSD", 6),
                                   F77_CONST_CHAR_ARG2 (" ", 1),
                                   0, 0, 0, 0, smlsiz
                                   F77_CHAR_ARG_LEN (6)
                                   F77_CHAR_ARG_LEN (1));

      // We compute the size of rwork and iwork because ZGELSD in
      // older versions of LAPACK does not return them on a query
      // call.
      float dminmn = static_cast<float> (minmn);
      float dsmlsizp1 = static_cast<float> (smlsiz+1);
      float tmp = octave::math::log2 (dminmn / dsmlsizp1);

      octave_idx_type nlvl = static_cast<octave_idx_type> (tmp) + 1;
      if (nlvl < 0)
        nlvl = 0;

      octave_idx_type lrwork = minmn*(10 + 2*smlsiz + 8*nlvl)
                               + 3*smlsiz*nrhs + (smlsiz+1)*(smlsiz+1);
      if (lrwork < 1)
        lrwork = 1;
      Array<float> rwork (dim_vector (lrwork, 1));
      float *prwork = rwork.fortran_vec ();

      octave_idx_type liwork = 3 * minmn * nlvl + 11 * minmn;
      if (liwork < 1)
        liwork = 1;
      Array<octave_idx_type> iwork (dim_vector (liwork, 1));
      octave_idx_type* piwork = iwork.fortran_vec ();

      F77_XFCN (cgelsd, CGELSD, (m, n, nrhs, F77_CMPLX_ARG (tmp_data), m, F77_CMPLX_ARG (pretval), maxmn,
                                 ps, rcon, rank, F77_CMPLX_ARG (work.fortran_vec ()),
                                 lwork, prwork, piwork, info));

      lwork = static_cast<octave_idx_type> (std::real (work(0)));
      work.resize (dim_vector (lwork, 1));
      rwork.resize (dim_vector (static_cast<octave_idx_type> (rwork(0)), 1));
      iwork.resize (dim_vector (iwork(0), 1));

      F77_XFCN (cgelsd, CGELSD, (m, n, nrhs, F77_CMPLX_ARG (tmp_data), m, F77_CMPLX_ARG (pretval),
                                 maxmn, ps, rcon, rank,
                                 F77_CMPLX_ARG (work.fortran_vec ()), lwork,
                                 prwork, piwork, info));

      if (rank < minmn)
        {
          if (s.elem (0) == 0.0)
            rcon = 0.0;
          else
            rcon = s.elem (minmn - 1) / s.elem (0);

          retval.resize (n, nrhs);
        }
    }

  return retval;
}

// column vector by row vector -> matrix operations

FloatComplexMatrix
operator * (const FloatColumnVector& v, const FloatComplexRowVector& a)
{
  FloatComplexColumnVector tmp (v);
  return tmp * a;
}

FloatComplexMatrix
operator * (const FloatComplexColumnVector& a, const FloatRowVector& b)
{
  FloatComplexRowVector tmp (b);
  return a * tmp;
}

FloatComplexMatrix
operator * (const FloatComplexColumnVector& v, const FloatComplexRowVector& a)
{
  FloatComplexMatrix retval;

  octave_idx_type len = v.numel ();

  if (len != 0)
    {
      octave_idx_type a_len = a.numel ();

      retval = FloatComplexMatrix (len, a_len);
      FloatComplex *c = retval.fortran_vec ();

      F77_XFCN (cgemm, CGEMM, (F77_CONST_CHAR_ARG2 ("N", 1),
                               F77_CONST_CHAR_ARG2 ("N", 1),
                               len, a_len, 1, 1.0, F77_CONST_CMPLX_ARG (v.data ()), len,
                               F77_CONST_CMPLX_ARG (a.data ()), 1, 0.0, F77_CMPLX_ARG (c), len
                               F77_CHAR_ARG_LEN (1)
                               F77_CHAR_ARG_LEN (1)));
    }

  return retval;
}

// matrix by diagonal matrix -> matrix operations

FloatComplexMatrix&
FloatComplexMatrix::operator += (const FloatDiagMatrix& a)
{
  octave_idx_type nr = rows ();
  octave_idx_type nc = cols ();

  octave_idx_type a_nr = rows ();
  octave_idx_type a_nc = cols ();

  if (nr != a_nr || nc != a_nc)
    err_nonconformant ("operator +=", nr, nc, a_nr, a_nc);

  for (octave_idx_type i = 0; i < a.length (); i++)
    elem (i, i) += a.elem (i, i);

  return *this;
}

FloatComplexMatrix&
FloatComplexMatrix::operator -= (const FloatDiagMatrix& a)
{
  octave_idx_type nr = rows ();
  octave_idx_type nc = cols ();

  octave_idx_type a_nr = rows ();
  octave_idx_type a_nc = cols ();

  if (nr != a_nr || nc != a_nc)
    err_nonconformant ("operator -=", nr, nc, a_nr, a_nc);

  for (octave_idx_type i = 0; i < a.length (); i++)
    elem (i, i) -= a.elem (i, i);

  return *this;
}

FloatComplexMatrix&
FloatComplexMatrix::operator += (const FloatComplexDiagMatrix& a)
{
  octave_idx_type nr = rows ();
  octave_idx_type nc = cols ();

  octave_idx_type a_nr = rows ();
  octave_idx_type a_nc = cols ();

  if (nr != a_nr || nc != a_nc)
    err_nonconformant ("operator +=", nr, nc, a_nr, a_nc);

  for (octave_idx_type i = 0; i < a.length (); i++)
    elem (i, i) += a.elem (i, i);

  return *this;
}

FloatComplexMatrix&
FloatComplexMatrix::operator -= (const FloatComplexDiagMatrix& a)
{
  octave_idx_type nr = rows ();
  octave_idx_type nc = cols ();

  octave_idx_type a_nr = rows ();
  octave_idx_type a_nc = cols ();

  if (nr != a_nr || nc != a_nc)
    err_nonconformant ("operator -=", nr, nc, a_nr, a_nc);

  for (octave_idx_type i = 0; i < a.length (); i++)
    elem (i, i) -= a.elem (i, i);

  return *this;
}

// matrix by matrix -> matrix operations

FloatComplexMatrix&
FloatComplexMatrix::operator += (const FloatMatrix& a)
{
  octave_idx_type nr = rows ();
  octave_idx_type nc = cols ();

  octave_idx_type a_nr = a.rows ();
  octave_idx_type a_nc = a.cols ();

  if (nr != a_nr || nc != a_nc)
    err_nonconformant ("operator +=", nr, nc, a_nr, a_nc);

  if (nr == 0 || nc == 0)
    return *this;

  FloatComplex *d = fortran_vec (); // Ensures only 1 reference to my privates!

  mx_inline_add2 (numel (), d, a.data ());
  return *this;
}

FloatComplexMatrix&
FloatComplexMatrix::operator -= (const FloatMatrix& a)
{
  octave_idx_type nr = rows ();
  octave_idx_type nc = cols ();

  octave_idx_type a_nr = a.rows ();
  octave_idx_type a_nc = a.cols ();

  if (nr != a_nr || nc != a_nc)
    err_nonconformant ("operator -=", nr, nc, a_nr, a_nc);

  if (nr == 0 || nc == 0)
    return *this;

  FloatComplex *d = fortran_vec (); // Ensures only 1 reference to my privates!

  mx_inline_sub2 (numel (), d, a.data ());
  return *this;
}

// unary operations

boolMatrix
FloatComplexMatrix::all (int dim) const
{
  return FloatComplexNDArray::all (dim);
}

boolMatrix
FloatComplexMatrix::any (int dim) const
{
  return FloatComplexNDArray::any (dim);
}

FloatComplexMatrix
FloatComplexMatrix::cumprod (int dim) const
{
  return FloatComplexNDArray::cumprod (dim);
}

FloatComplexMatrix
FloatComplexMatrix::cumsum (int dim) const
{
  return FloatComplexNDArray::cumsum (dim);
}

FloatComplexMatrix
FloatComplexMatrix::prod (int dim) const
{
  return FloatComplexNDArray::prod (dim);
}

FloatComplexMatrix
FloatComplexMatrix::sum (int dim) const
{
  return FloatComplexNDArray::sum (dim);
}

FloatComplexMatrix
FloatComplexMatrix::sumsq (int dim) const
{
  return FloatComplexNDArray::sumsq (dim);
}

FloatMatrix FloatComplexMatrix::abs (void) const
{
  return FloatComplexNDArray::abs ();
}

FloatComplexMatrix
FloatComplexMatrix::diag (octave_idx_type k) const
{
  return FloatComplexNDArray::diag (k);
}

FloatComplexDiagMatrix
FloatComplexMatrix::diag (octave_idx_type m, octave_idx_type n) const
{
  FloatComplexDiagMatrix retval;

  octave_idx_type nr = rows ();
  octave_idx_type nc = cols ();

  if (nr == 1 || nc == 1)
    retval = FloatComplexDiagMatrix (*this, m, n);
  else
    (*current_liboctave_error_handler) ("diag: expecting vector argument");

  return retval;
}

bool
FloatComplexMatrix::row_is_real_only (octave_idx_type i) const
{
  bool retval = true;

  octave_idx_type nc = columns ();

  for (octave_idx_type j = 0; j < nc; j++)
    {
      if (std::imag (elem (i, j)) != 0.0)
        {
          retval = false;
          break;
        }
    }

  return retval;
}

bool
FloatComplexMatrix::column_is_real_only (octave_idx_type j) const
{
  bool retval = true;

  octave_idx_type nr = rows ();

  for (octave_idx_type i = 0; i < nr; i++)
    {
      if (std::imag (elem (i, j)) != 0.0)
        {
          retval = false;
          break;
        }
    }

  return retval;
}

FloatComplexColumnVector
FloatComplexMatrix::row_min (void) const
{
  Array<octave_idx_type> dummy_idx;
  return row_min (dummy_idx);
}

FloatComplexColumnVector
FloatComplexMatrix::row_min (Array<octave_idx_type>& idx_arg) const
{
  FloatComplexColumnVector result;

  octave_idx_type nr = rows ();
  octave_idx_type nc = cols ();

  if (nr > 0 && nc > 0)
    {
      result.resize (nr);
      idx_arg.resize (dim_vector (nr, 1));

      for (octave_idx_type i = 0; i < nr; i++)
        {
          bool real_only = row_is_real_only (i);

          octave_idx_type idx_j;

          FloatComplex tmp_min;

          float abs_min = octave::numeric_limits<float>::NaN ();

          for (idx_j = 0; idx_j < nc; idx_j++)
            {
              tmp_min = elem (i, idx_j);

              if (! octave::math::isnan (tmp_min))
                {
                  abs_min = real_only ? std::real (tmp_min)
                                      : std::abs (tmp_min);
                  break;
                }
            }

          for (octave_idx_type j = idx_j+1; j < nc; j++)
            {
              FloatComplex tmp = elem (i, j);

              if (octave::math::isnan (tmp))
                continue;

              float abs_tmp = real_only ? std::real (tmp) : std::abs (tmp);

              if (abs_tmp < abs_min)
                {
                  idx_j = j;
                  tmp_min = tmp;
                  abs_min = abs_tmp;
                }
            }

          if (octave::math::isnan (tmp_min))
            {
              result.elem (i) = FloatComplex_NaN_result;
              idx_arg.elem (i) = 0;
            }
          else
            {
              result.elem (i) = tmp_min;
              idx_arg.elem (i) = idx_j;
            }
        }
    }

  return result;
}

FloatComplexColumnVector
FloatComplexMatrix::row_max (void) const
{
  Array<octave_idx_type> dummy_idx;
  return row_max (dummy_idx);
}

FloatComplexColumnVector
FloatComplexMatrix::row_max (Array<octave_idx_type>& idx_arg) const
{
  FloatComplexColumnVector result;

  octave_idx_type nr = rows ();
  octave_idx_type nc = cols ();

  if (nr > 0 && nc > 0)
    {
      result.resize (nr);
      idx_arg.resize (dim_vector (nr, 1));

      for (octave_idx_type i = 0; i < nr; i++)
        {
          bool real_only = row_is_real_only (i);

          octave_idx_type idx_j;

          FloatComplex tmp_max;

          float abs_max = octave::numeric_limits<float>::NaN ();

          for (idx_j = 0; idx_j < nc; idx_j++)
            {
              tmp_max = elem (i, idx_j);

              if (! octave::math::isnan (tmp_max))
                {
                  abs_max = real_only ? std::real (tmp_max)
                                      : std::abs (tmp_max);
                  break;
                }
            }

          for (octave_idx_type j = idx_j+1; j < nc; j++)
            {
              FloatComplex tmp = elem (i, j);

              if (octave::math::isnan (tmp))
                continue;

              float abs_tmp = real_only ? std::real (tmp) : std::abs (tmp);

              if (abs_tmp > abs_max)
                {
                  idx_j = j;
                  tmp_max = tmp;
                  abs_max = abs_tmp;
                }
            }

          if (octave::math::isnan (tmp_max))
            {
              result.elem (i) = FloatComplex_NaN_result;
              idx_arg.elem (i) = 0;
            }
          else
            {
              result.elem (i) = tmp_max;
              idx_arg.elem (i) = idx_j;
            }
        }
    }

  return result;
}

FloatComplexRowVector
FloatComplexMatrix::column_min (void) const
{
  Array<octave_idx_type> dummy_idx;
  return column_min (dummy_idx);
}

FloatComplexRowVector
FloatComplexMatrix::column_min (Array<octave_idx_type>& idx_arg) const
{
  FloatComplexRowVector result;

  octave_idx_type nr = rows ();
  octave_idx_type nc = cols ();

  if (nr > 0 && nc > 0)
    {
      result.resize (nc);
      idx_arg.resize (dim_vector (1, nc));

      for (octave_idx_type j = 0; j < nc; j++)
        {
          bool real_only = column_is_real_only (j);

          octave_idx_type idx_i;

          FloatComplex tmp_min;

          float abs_min = octave::numeric_limits<float>::NaN ();

          for (idx_i = 0; idx_i < nr; idx_i++)
            {
              tmp_min = elem (idx_i, j);

              if (! octave::math::isnan (tmp_min))
                {
                  abs_min = real_only ? std::real (tmp_min)
                                      : std::abs (tmp_min);
                  break;
                }
            }

          for (octave_idx_type i = idx_i+1; i < nr; i++)
            {
              FloatComplex tmp = elem (i, j);

              if (octave::math::isnan (tmp))
                continue;

              float abs_tmp = real_only ? std::real (tmp) : std::abs (tmp);

              if (abs_tmp < abs_min)
                {
                  idx_i = i;
                  tmp_min = tmp;
                  abs_min = abs_tmp;
                }
            }

          if (octave::math::isnan (tmp_min))
            {
              result.elem (j) = FloatComplex_NaN_result;
              idx_arg.elem (j) = 0;
            }
          else
            {
              result.elem (j) = tmp_min;
              idx_arg.elem (j) = idx_i;
            }
        }
    }

  return result;
}

FloatComplexRowVector
FloatComplexMatrix::column_max (void) const
{
  Array<octave_idx_type> dummy_idx;
  return column_max (dummy_idx);
}

FloatComplexRowVector
FloatComplexMatrix::column_max (Array<octave_idx_type>& idx_arg) const
{
  FloatComplexRowVector result;

  octave_idx_type nr = rows ();
  octave_idx_type nc = cols ();

  if (nr > 0 && nc > 0)
    {
      result.resize (nc);
      idx_arg.resize (dim_vector (1, nc));

      for (octave_idx_type j = 0; j < nc; j++)
        {
          bool real_only = column_is_real_only (j);

          octave_idx_type idx_i;

          FloatComplex tmp_max;

          float abs_max = octave::numeric_limits<float>::NaN ();

          for (idx_i = 0; idx_i < nr; idx_i++)
            {
              tmp_max = elem (idx_i, j);

              if (! octave::math::isnan (tmp_max))
                {
                  abs_max = real_only ? std::real (tmp_max)
                                      : std::abs (tmp_max);
                  break;
                }
            }

          for (octave_idx_type i = idx_i+1; i < nr; i++)
            {
              FloatComplex tmp = elem (i, j);

              if (octave::math::isnan (tmp))
                continue;

              float abs_tmp = real_only ? std::real (tmp) : std::abs (tmp);

              if (abs_tmp > abs_max)
                {
                  idx_i = i;
                  tmp_max = tmp;
                  abs_max = abs_tmp;
                }
            }

          if (octave::math::isnan (tmp_max))
            {
              result.elem (j) = FloatComplex_NaN_result;
              idx_arg.elem (j) = 0;
            }
          else
            {
              result.elem (j) = tmp_max;
              idx_arg.elem (j) = idx_i;
            }
        }
    }

  return result;
}

// i/o

std::ostream&
operator << (std::ostream& os, const FloatComplexMatrix& a)
{
  for (octave_idx_type i = 0; i < a.rows (); i++)
    {
      for (octave_idx_type j = 0; j < a.cols (); j++)
        {
          os << " ";
          octave_write_complex (os, a.elem (i, j));
        }
      os << "\n";
    }
  return os;
}

std::istream&
operator >> (std::istream& is, FloatComplexMatrix& a)
{
  octave_idx_type nr = a.rows ();
  octave_idx_type nc = a.cols ();

  if (nr > 0 && nc > 0)
    {
      FloatComplex tmp;
      for (octave_idx_type i = 0; i < nr; i++)
        for (octave_idx_type j = 0; j < nc; j++)
          {
            tmp = octave_read_value<FloatComplex> (is);
            if (is)
              a.elem (i, j) = tmp;
            else
              return is;
          }
    }

  return is;
}

FloatComplexMatrix
Givens (const FloatComplex& x, const FloatComplex& y)
{
  float cc;
  FloatComplex cs, temp_r;

  F77_FUNC (clartg, CLARTG) (F77_CONST_CMPLX_ARG (&x), F77_CONST_CMPLX_ARG (&y), cc, F77_CMPLX_ARG (&cs), F77_CMPLX_ARG (&temp_r));

  FloatComplexMatrix g (2, 2);

  g.elem (0, 0) = cc;
  g.elem (1, 1) = cc;
  g.elem (0, 1) = cs;
  g.elem (1, 0) = -conj (cs);

  return g;
}

FloatComplexMatrix
Sylvester (const FloatComplexMatrix& a, const FloatComplexMatrix& b,
           const FloatComplexMatrix& c)
{
  FloatComplexMatrix retval;

  // FIXME: need to check that a, b, and c are all the same
  // size.

  // Compute Schur decompositions

  schur<FloatComplexMatrix> as (a, "U");
  schur<FloatComplexMatrix> bs (b, "U");

  // Transform c to new coordinates.

  FloatComplexMatrix ua = as.unitary_matrix ();
  FloatComplexMatrix sch_a = as.schur_matrix ();

  FloatComplexMatrix ub = bs.unitary_matrix ();
  FloatComplexMatrix sch_b = bs.schur_matrix ();

  FloatComplexMatrix cx = ua.hermitian () * c * ub;

  // Solve the sylvester equation, back-transform, and return the
  // solution.

  octave_idx_type a_nr = a.rows ();
  octave_idx_type b_nr = b.rows ();

  float scale;
  octave_idx_type info;

  FloatComplex *pa = sch_a.fortran_vec ();
  FloatComplex *pb = sch_b.fortran_vec ();
  FloatComplex *px = cx.fortran_vec ();

  F77_XFCN (ctrsyl, CTRSYL, (F77_CONST_CHAR_ARG2 ("N", 1),
                             F77_CONST_CHAR_ARG2 ("N", 1),
                             1, a_nr, b_nr, F77_CMPLX_ARG (pa), a_nr, F77_CMPLX_ARG (pb),
                             b_nr, F77_CMPLX_ARG (px), a_nr, scale, info
                             F77_CHAR_ARG_LEN (1)
                             F77_CHAR_ARG_LEN (1)));

  // FIXME: check info?

  retval = ua * cx * ub.hermitian ();

  return retval;
}

FloatComplexMatrix
operator * (const FloatComplexMatrix& m, const FloatMatrix& a)
{
  if (m.columns () > std::min (m.rows (), a.columns ()) / 10)
    return FloatComplexMatrix (real (m) * a, imag (m) * a);
  else
    return m * FloatComplexMatrix (a);
}

FloatComplexMatrix
operator * (const FloatMatrix& m, const FloatComplexMatrix& a)
{
  if (a.rows () > std::min (m.rows (), a.columns ()) / 10)
    return FloatComplexMatrix (m * real (a), m * imag (a));
  else
    return FloatComplexMatrix (m) * a;
}

/*

## Simple Dot Product, Matrix-Vector, and Matrix-Matrix Unit tests
%!assert (single ([1+i 2+i 3+i]) * single ([ 4+i ; 5+i ; 6+i]), single (29+21i), 5e-7)
%!assert (single ([1+i 2+i ; 3+i 4+i]) * single ([5+i ; 6+i]), single ([15 + 14i ; 37 + 18i]), 5e-7)
%!assert (single ([1+i 2+i ; 3+i 4+i ]) * single ([5+i 6+i ; 7+i 8+i]), single ([17 + 15i 20 + 17i; 41 + 19i 48 + 21i]), 5e-7)
%!assert (single ([1 i])*single ([i 0])', single (-i))

## Test some simple identities
%!shared M, cv, rv
%! M = single (randn (10,10))+ i*single (rand (10,10));
%! cv = single (randn (10,1))+ i*single (rand (10,1));
%! rv = single (randn (1,10))+ i*single (rand (1,10));
%!assert ([M*cv,M*cv], M*[cv,cv], 5e-6)
%!assert ([M.'*cv,M.'*cv], M.'*[cv,cv], 5e-6)
%!assert ([M'*cv,M'*cv], M'*[cv,cv], 5e-6)
%!assert ([rv*M;rv*M], [rv;rv]*M, 5e-6)
%!assert ([rv*M.';rv*M.'], [rv;rv]*M.', 5e-6)
%!assert ([rv*M';rv*M'], [rv;rv]*M', 5e-6)
%!assert (2*rv*cv, [rv,rv]*[cv;cv], 5e-6)

*/

static char
get_blas_trans_arg (bool trans, bool conj)
{
  return trans ? (conj ? 'C' : 'T') : 'N';
}

// the general GEMM operation

FloatComplexMatrix
xgemm (const FloatComplexMatrix& a, const FloatComplexMatrix& b,
       blas_trans_type transa, blas_trans_type transb)
{
  FloatComplexMatrix retval;

  bool tra = transa != blas_no_trans;
  bool trb = transb != blas_no_trans;
  bool cja = transa == blas_conj_trans;
  bool cjb = transb == blas_conj_trans;

  octave_idx_type a_nr = tra ? a.cols () : a.rows ();
  octave_idx_type a_nc = tra ? a.rows () : a.cols ();

  octave_idx_type b_nr = trb ? b.cols () : b.rows ();
  octave_idx_type b_nc = trb ? b.rows () : b.cols ();

  if (a_nc != b_nr)
    err_nonconformant ("operator *", a_nr, a_nc, b_nr, b_nc);

  if (a_nr == 0 || a_nc == 0 || b_nc == 0)
    retval = FloatComplexMatrix (a_nr, b_nc, 0.0);
  else if (a.data () == b.data () && a_nr == b_nc && tra != trb)
    {
      octave_idx_type lda = a.rows ();

      // FIXME: looking at the reference BLAS, it appears that it
      // should not be necessary to initialize the output matrix if
      // BETA is 0 in the call to CHERK, but ATLAS appears to
      // use the result matrix before zeroing the elements.

      retval = FloatComplexMatrix (a_nr, b_nc, 0.0);
      FloatComplex *c = retval.fortran_vec ();

      const char ctra = get_blas_trans_arg (tra, cja);
      if (cja || cjb)
        {
          F77_XFCN (cherk, CHERK, (F77_CONST_CHAR_ARG2 ("U", 1),
                                   F77_CONST_CHAR_ARG2 (&ctra, 1),
                                   a_nr, a_nc, 1.0,
                                   F77_CONST_CMPLX_ARG (a.data ()), lda, 0.0, F77_CMPLX_ARG (c), a_nr
                                   F77_CHAR_ARG_LEN (1)
                                   F77_CHAR_ARG_LEN (1)));
          for (octave_idx_type j = 0; j < a_nr; j++)
            for (octave_idx_type i = 0; i < j; i++)
              retval.xelem (j,i) = std::conj (retval.xelem (i,j));
        }
      else
        {
          F77_XFCN (csyrk, CSYRK, (F77_CONST_CHAR_ARG2 ("U", 1),
                                   F77_CONST_CHAR_ARG2 (&ctra, 1),
                                   a_nr, a_nc, 1.0,
                                   F77_CONST_CMPLX_ARG (a.data ()), lda, 0.0, F77_CMPLX_ARG (c), a_nr
                                   F77_CHAR_ARG_LEN (1)
                                   F77_CHAR_ARG_LEN (1)));
          for (octave_idx_type j = 0; j < a_nr; j++)
            for (octave_idx_type i = 0; i < j; i++)
              retval.xelem (j,i) = retval.xelem (i,j);

        }

    }
  else
    {
      octave_idx_type lda = a.rows ();
      octave_idx_type tda = a.cols ();
      octave_idx_type ldb = b.rows ();
      octave_idx_type tdb = b.cols ();

      retval = FloatComplexMatrix (a_nr, b_nc, 0.0);
      FloatComplex *c = retval.fortran_vec ();

      if (b_nc == 1 && a_nr == 1)
        {
          if (cja == cjb)
            {
              F77_FUNC (xcdotu, XCDOTU) (a_nc, F77_CONST_CMPLX_ARG (a.data ()), 1, F77_CONST_CMPLX_ARG (b.data ()), 1,
                                         F77_CMPLX_ARG (c));
              if (cja) *c = std::conj (*c);
            }
          else if (cja)
            F77_FUNC (xcdotc, XCDOTC) (a_nc, F77_CONST_CMPLX_ARG (a.data ()), 1, F77_CONST_CMPLX_ARG (b.data ()), 1,
                                       F77_CMPLX_ARG (c));
          else
            F77_FUNC (xcdotc, XCDOTC) (a_nc, F77_CONST_CMPLX_ARG (b.data ()), 1, F77_CONST_CMPLX_ARG (a.data ()), 1,
                                       F77_CMPLX_ARG (c));
        }
      else if (b_nc == 1 && ! cjb)
        {
          const char ctra = get_blas_trans_arg (tra, cja);
          F77_XFCN (cgemv, CGEMV, (F77_CONST_CHAR_ARG2 (&ctra, 1),
                                   lda, tda, 1.0,  F77_CONST_CMPLX_ARG (a.data ()), lda,
                                   F77_CONST_CMPLX_ARG (b.data ()), 1, 0.0, F77_CMPLX_ARG (c), 1
                                   F77_CHAR_ARG_LEN (1)));
        }
      else if (a_nr == 1 && ! cja && ! cjb)
        {
          const char crevtrb = get_blas_trans_arg (! trb, cjb);
          F77_XFCN (cgemv, CGEMV, (F77_CONST_CHAR_ARG2 (&crevtrb, 1),
                                   ldb, tdb, 1.0,  F77_CONST_CMPLX_ARG (b.data ()), ldb,
                                   F77_CONST_CMPLX_ARG (a.data ()), 1, 0.0, F77_CMPLX_ARG (c), 1
                                   F77_CHAR_ARG_LEN (1)));
        }
      else
        {
          const char ctra = get_blas_trans_arg (tra, cja);
          const char ctrb = get_blas_trans_arg (trb, cjb);
          F77_XFCN (cgemm, CGEMM, (F77_CONST_CHAR_ARG2 (&ctra, 1),
                                   F77_CONST_CHAR_ARG2 (&ctrb, 1),
                                   a_nr, b_nc, a_nc, 1.0, F77_CONST_CMPLX_ARG (a.data ()),
                                   lda, F77_CONST_CMPLX_ARG (b.data ()), ldb, 0.0, F77_CMPLX_ARG (c), a_nr
                                   F77_CHAR_ARG_LEN (1)
                                   F77_CHAR_ARG_LEN (1)));
        }
    }

  return retval;
}

FloatComplexMatrix
operator * (const FloatComplexMatrix& a, const FloatComplexMatrix& b)
{
  return xgemm (a, b);
}

// FIXME: it would be nice to share code among the min/max
// functions below.

#define EMPTY_RETURN_CHECK(T)                   \
  if (nr == 0 || nc == 0)                       \
    return T (nr, nc);

FloatComplexMatrix
min (const FloatComplex& c, const FloatComplexMatrix& m)
{
  octave_idx_type nr = m.rows ();
  octave_idx_type nc = m.columns ();

  EMPTY_RETURN_CHECK (FloatComplexMatrix);

  FloatComplexMatrix result (nr, nc);

  for (octave_idx_type j = 0; j < nc; j++)
    for (octave_idx_type i = 0; i < nr; i++)
      {
        octave_quit ();
        result(i, j) = octave::math::min (c, m(i, j));
      }

  return result;
}

FloatComplexMatrix
min (const FloatComplexMatrix& m, const FloatComplex& c)
{
  return min (c, m);
}

FloatComplexMatrix
min (const FloatComplexMatrix& a, const FloatComplexMatrix& b)
{
  octave_idx_type nr = a.rows ();
  octave_idx_type nc = a.columns ();

  if (nr != b.rows () || nc != b.columns ())
    (*current_liboctave_error_handler)
      ("two-arg min requires same size arguments");

  EMPTY_RETURN_CHECK (FloatComplexMatrix);

  FloatComplexMatrix result (nr, nc);

  for (octave_idx_type j = 0; j < nc; j++)
    {
      bool columns_are_real_only = true;
      for (octave_idx_type i = 0; i < nr; i++)
        {
          octave_quit ();
          if (std::imag (a(i, j)) != 0.0 || std::imag (b(i, j)) != 0.0)
            {
              columns_are_real_only = false;
              break;
            }
        }

      if (columns_are_real_only)
        {
          for (octave_idx_type i = 0; i < nr; i++)
            result(i, j) = octave::math::min (std::real (a(i, j)), std::real (b(i, j)));
        }
      else
        {
          for (octave_idx_type i = 0; i < nr; i++)
            {
              octave_quit ();
              result(i, j) = octave::math::min (a(i, j), b(i, j));
            }
        }
    }

  return result;
}

FloatComplexMatrix
max (const FloatComplex& c, const FloatComplexMatrix& m)
{
  octave_idx_type nr = m.rows ();
  octave_idx_type nc = m.columns ();

  EMPTY_RETURN_CHECK (FloatComplexMatrix);

  FloatComplexMatrix result (nr, nc);

  for (octave_idx_type j = 0; j < nc; j++)
    for (octave_idx_type i = 0; i < nr; i++)
      {
        octave_quit ();
        result(i, j) = octave::math::max (c, m(i, j));
      }

  return result;
}

FloatComplexMatrix
max (const FloatComplexMatrix& m, const FloatComplex& c)
{
  return max (c, m);
}

FloatComplexMatrix
max (const FloatComplexMatrix& a, const FloatComplexMatrix& b)
{
  octave_idx_type nr = a.rows ();
  octave_idx_type nc = a.columns ();

  if (nr != b.rows () || nc != b.columns ())
    (*current_liboctave_error_handler)
      ("two-arg max requires same size arguments");

  EMPTY_RETURN_CHECK (FloatComplexMatrix);

  FloatComplexMatrix result (nr, nc);

  for (octave_idx_type j = 0; j < nc; j++)
    {
      bool columns_are_real_only = true;
      for (octave_idx_type i = 0; i < nr; i++)
        {
          octave_quit ();
          if (std::imag (a(i, j)) != 0.0 || std::imag (b(i, j)) != 0.0)
            {
              columns_are_real_only = false;
              break;
            }
        }

      if (columns_are_real_only)
        {
          for (octave_idx_type i = 0; i < nr; i++)
            {
              octave_quit ();
              result(i, j) = octave::math::max (std::real (a(i, j)), std::real (b(i, j)));
            }
        }
      else
        {
          for (octave_idx_type i = 0; i < nr; i++)
            {
              octave_quit ();
              result(i, j) = octave::math::max (a(i, j), b(i, j));
            }
        }
    }

  return result;
}

FloatComplexMatrix linspace (const FloatComplexColumnVector& x1,
                             const FloatComplexColumnVector& x2,
                             octave_idx_type n)

{
  octave_idx_type m = x1.numel ();

  if (x2.numel () != m)
    (*current_liboctave_error_handler)
      ("linspace: vectors must be of equal length");

  NoAlias<FloatComplexMatrix> retval;

  if (n < 1)
    {
      retval.clear (m, 0);
      return retval;
    }

  retval.clear (m, n);
  for (octave_idx_type i = 0; i < m; i++)
    retval(i, 0) = x1(i);

  // The last column is unused so temporarily store delta there
  FloatComplex *delta = &retval(0, n-1);
  for (octave_idx_type i = 0; i < m; i++)
    delta[i] = (x2(i) - x1(i)) / (n - 1.0f);

  for (octave_idx_type j = 1; j < n-1; j++)
    for (octave_idx_type i = 0; i < m; i++)
      retval(i, j) = x1(i) + static_cast<float> (j)*delta[i];

  for (octave_idx_type i = 0; i < m; i++)
    retval(i, n-1) = x2(i);

  return retval;
}

MS_CMP_OPS (FloatComplexMatrix, FloatComplex)
MS_BOOL_OPS (FloatComplexMatrix, FloatComplex)

SM_CMP_OPS (FloatComplex, FloatComplexMatrix)
SM_BOOL_OPS (FloatComplex, FloatComplexMatrix)

MM_CMP_OPS (FloatComplexMatrix, FloatComplexMatrix)
MM_BOOL_OPS (FloatComplexMatrix, FloatComplexMatrix)