view liboctave/util/action-container.h @ 30920:47cbc69e66cd

eliminate direct access to call stack from evaluator The call stack is an internal implementation detail of the evaluator. Direct access to it outside of the evlauator should not be needed. * pt-eval.h (tree_evaluator::get_call_stack): Delete.
author John W. Eaton <jwe@octave.org>
date Fri, 08 Apr 2022 15:19:22 -0400
parents 796f54d4ddbf
children e88a07dec498
line wrap: on
line source

////////////////////////////////////////////////////////////////////////
//
// Copyright (C) 1993-2022 The Octave Project Developers
//
// See the file COPYRIGHT.md in the top-level directory of this
// distribution or <https://octave.org/copyright/>.
//
// This file is part of Octave.
//
// Octave is free software: you can redistribute it and/or modify it
// under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// Octave is distributed in the hope that it will be useful, but
// WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with Octave; see the file COPYING.  If not, see
// <https://www.gnu.org/licenses/>.
//
////////////////////////////////////////////////////////////////////////

#if ! defined (octave_action_container_h)
#define octave_action_container_h 1

#include "octave-config.h"

#include <cstddef>
#include <functional>

// This class allows registering actions in a list for later
// execution, either explicitly or when the container goes out of
// scope.

// FIXME: is there a better name for this class?

namespace octave
{
  class
  action_container
  {
  public:

    // A generic unwind_protect element.  Knows how to run itself and
    // discard itself.  Also, contains a pointer to the next element.
    class elem
    {
    public:

      friend class action_container;

      elem (void) { }

      // No copying!

      elem (const elem&) = delete;

      elem& operator = (const elem&) = delete;

      virtual ~elem (void) = default;

      virtual void run (void) { }
    };

    // An element that merely runs a void (*)(void) function.

    class fcn_elem : public elem
    {
    public:

      // FIXME: Do we need to apply std::forward to the arguments to
      // std::bind here?

      template <typename F, typename... Args>
      fcn_elem (F&& fcn, Args&&... args)
        : m_fcn (std::bind (fcn, args...))
      { }

      void run (void) { m_fcn (); }

    private:

      std::function<void (void)> m_fcn;
    };

    // An element that stores arbitrary variable, and restores it.

    template <typename T>
    class restore_var_elem : public elem
    {
    public:

      restore_var_elem (T& ref, const T& val)
        : m_ptr (&ref), m_val (val) { }

      // No copying!

      restore_var_elem (const restore_var_elem&) = delete;

      restore_var_elem& operator = (const restore_var_elem&) = delete;

      void run (void) { *m_ptr = m_val; }

    private:

      T *m_ptr, m_val;
    };

    // Deletes a class allocated using new.

    template <typename T>
    class delete_ptr_elem : public elem
    {
    public:

      delete_ptr_elem (T *ptr)
        : m_ptr (ptr) { }

      // No copying!

      delete_ptr_elem (const delete_ptr_elem&) = delete;

      delete_ptr_elem operator = (const delete_ptr_elem&) = delete;

      void run (void) { delete m_ptr; }

    private:

      T *m_ptr;
    };

    action_container (void) { }

    // No copying!

    action_container (const action_container&) = delete;

    action_container& operator = (const action_container&) = delete;

    virtual ~action_container (void) = default;

    template <typename F, typename... Args>
    void add (F&& fcn, Args&&... args)
    {
      add_action (new fcn_elem (std::forward<F> (fcn),
                                std::forward<Args> (args)...));
    }

    // Use separate template types for function pointer parameter
    // declarations and captured arguments so that differences in
    // const are handled properly.

    template <typename... Params, typename... Args>
    void add_fcn (void (*fcn) (Params...), Args&&... args)
    {
      add_action (new fcn_elem (fcn, std::forward<Args> (args)...));
    }

    template <typename T, typename... Params, typename... Args>
    void add_method (T *obj, void (T::*method) (Params...), Args&&... args)
    {
      add_action (new fcn_elem (method, obj, std::forward<Args> (args)...));
    }

    template <typename T, typename... Params, typename... Args>
    void add_method (T& obj, void (T::*method) (Params...), Args&&... args)
    {
      add_action (new fcn_elem (method, &obj, std::forward<Args> (args)...));
    }

    // Call to delete (T*).

    template <typename T>
    void add_delete (T *obj)
    {
      add_action (new delete_ptr_elem<T> (obj));
    }

    // Protect any variable.
    template <typename T>
    void protect_var (T& var)
    {
      add_action (new restore_var_elem<T> (var, var));
    }

    // Protect any variable, value given.
    template <typename T>
    void protect_var (T& var, const T& val)
    {
      add_action (new restore_var_elem<T> (var, val));
    }

    operator bool (void) const { return ! empty (); }

    virtual void run_first (void) = 0;

    OCTAVE_API void run (std::size_t num);

    void run (void) { run (size ()); }

    virtual void discard_first (void) = 0;

    void discard (std::size_t num)
    {
      if (num > size ())
        num = size ();

      for (std::size_t i = 0; i < num; i++)
        discard_first ();
    }

    void discard (void) { discard (size ()); }

    virtual std::size_t size (void) const = 0;

    bool empty (void) const { return size () == 0; }

  protected:

    virtual void add_action (elem *new_elem) = 0;
  };
}

#endif