view scripts/image/rgb2hsv.m @ 30920:47cbc69e66cd

eliminate direct access to call stack from evaluator The call stack is an internal implementation detail of the evaluator. Direct access to it outside of the evlauator should not be needed. * pt-eval.h (tree_evaluator::get_call_stack): Delete.
author John W. Eaton <jwe@octave.org>
date Fri, 08 Apr 2022 15:19:22 -0400
parents 796f54d4ddbf
children 597f3ee61a48
line wrap: on
line source

########################################################################
##
## Copyright (C) 1999-2022 The Octave Project Developers
##
## See the file COPYRIGHT.md in the top-level directory of this
## distribution or <https://octave.org/copyright/>.
##
## This file is part of Octave.
##
## Octave is free software: you can redistribute it and/or modify it
## under the terms of the GNU General Public License as published by
## the Free Software Foundation, either version 3 of the License, or
## (at your option) any later version.
##
## Octave is distributed in the hope that it will be useful, but
## WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
## GNU General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with Octave; see the file COPYING.  If not, see
## <https://www.gnu.org/licenses/>.
##
########################################################################

## -*- texinfo -*-
## @deftypefn  {} {@var{hsv_map} =} rgb2hsv (@var{rgb_map})
## @deftypefnx {} {@var{hsv_img} =} rgb2hsv (@var{rgb_img})
## Transform a colormap or image from RGB to HSV color space.
##
## A color in the RGB space consists of red, green, and blue intensities.
##
## A color in HSV space is represented by hue, saturation and value
## (brightness) levels in a cylindrical coordinate system.  Hue is the
## azimuth and describes the dominant color.  Saturation is the radial
## distance and gives the amount of hue mixed into the color.  Value is
## the height and is the amount of light in the color.
##
## Output class and size will be the same as input.
##
## @seealso{hsv2rgb, rgb2ind, rgb2gray}
## @end deftypefn

function hsv = rgb2hsv (rgb)

  if (nargin < 1)
    print_usage ();
  endif

  [rgb, sz, is_im, is_nd] ...
    = colorspace_conversion_input_check ("rgb2hsv", "RGB", rgb);

  ## get the max and min for each row
  s = min (rgb, [], 2);
  v = max (rgb, [], 2);

  ## set hue to zero for undefined values (gray has no hue)
  h = zeros (rows (rgb), 1);
  notgray = (s != v);

  ## blue hue
  idx = (v == rgb(:,3) & notgray);
  if (any (idx))
    h(idx) = 2/3 + 1/6 * (rgb(idx,1) - rgb(idx,2)) ./ (v(idx) - s(idx));
  endif

  ## green hue
  idx = (v == rgb(:,2) & notgray);
  if (any (idx))
    h(idx) = 1/3 + 1/6 * (rgb(idx,3) - rgb(idx,1)) ./ (v(idx) - s(idx));
  endif

  ## red hue
  idx = (v == rgb(:,1) & notgray);
  if (any (idx))
    h(idx) =       1/6 * (rgb(idx,2) - rgb(idx,3)) ./ (v(idx) - s(idx));
  endif
  h(h < 0) += 1;   # correct for negative red

  ## set the saturation
  s(! notgray) = 0;
  s(notgray) = 1 - s(notgray) ./ v(notgray);

  hsv = [h, s, v];
  hsv = colorspace_conversion_revert (hsv, sz, is_im, is_nd);

endfunction


## Test pure colors and gray
%!assert (rgb2hsv ([1 0 0]), [0 1 1])
%!assert (rgb2hsv ([0 1 0]), [1/3 1 1])
%!assert (rgb2hsv ([0 0 1]), [2/3 1 1])
%!assert (rgb2hsv ([1 1 0]), [1/6 1 1])
%!assert (rgb2hsv ([0 1 1]), [1/2 1 1])
%!assert (rgb2hsv ([1 0 1]), [5/6 1 1])
%!assert (rgb2hsv ([0.5 0.5 0.5]), [0 0 0.5])

## Test tolarant input checking on floats
%!assert (rgb2hsv ([1.5 1 1]), [0 1/3 1.5], eps)

%!test
%! rgb_map = rand (64, 3);
%! assert (hsv2rgb (rgb2hsv (rgb_map)), rgb_map, 1e-6);

%!test
%! rgb_img = rand (64, 64, 3);
%! assert (hsv2rgb (rgb2hsv (rgb_img)), rgb_img, 1e-6);

## support sparse input
%!assert (rgb2hsv (sparse ([0 0 1])), sparse ([2/3 1 1]))
%!assert (rgb2hsv (sparse ([0 1 1])), sparse ([1/2 1 1]))
%!assert (rgb2hsv (sparse ([1 1 1])), sparse ([0 0 1]))

## Test input validation
%!error <Invalid call> rgb2hsv ()
%!error <invalid data type 'cell'> rgb2hsv ({1})
%!error <RGB must be a colormap or RGB image> rgb2hsv (ones (2,2))

## Test ND input
%!test
%! rgb = rand (16, 16, 3, 5);
%! hsv = zeros (size (rgb));
%! for i = 1:5
%!   hsv(:,:,:,i) = rgb2hsv (rgb(:,:,:,i));
%! endfor
%! assert (rgb2hsv (rgb), hsv);

## Test output class and size for input images.
## Most of the tests only test for colormap input.

%!test
%! hsv = rgb2hsv (rand (10, 10, 3));
%! assert (class (hsv), "double");
%! assert (size (hsv), [10 10 3]);

%!test
%! hsv = rgb2hsv (rand (10, 10, 3, "single"));
%! assert (class (hsv), "single");
%! assert (size (hsv), [10 10 3]);

%!test
%! rgb = (rand (10, 10, 3) * 3 ) - 0.5; # values outside range [0 1]
%! hsv = rgb2hsv (rgb);
%! assert (class (hsv), "double");
%! assert (size (hsv), [10 10 3]);

%!test
%! rgb = (rand (10, 10, 3, "single") * 3 ) - 0.5; # values outside range [0 1]
%! hsv = rgb2hsv (rgb);
%! assert (class (hsv), "single");
%! assert (size (hsv), [10 10 3]);

%!test
%! hsv = rgb2hsv (randi ([0 255], 10, 10, 3, "uint8"));
%! assert (class (hsv), "double");
%! assert (size (hsv), [10 10 3]);

%!test
%! hsv = rgb2hsv (randi ([0 65535], 10, 10, 3, "uint16"));
%! assert (class (hsv), "double");
%! assert (size (hsv), [10 10 3]);

%!test
%! hsv = rgb2hsv (randi ([-128 127], 10, 10, 3, "int8"));
%! assert (class (hsv), "double");
%! assert (size (hsv), [10 10 3]);

%!test
%! rgb_double = reshape ([1 0 1 .5 1 1 0 .5 0 1 1 .5], [2 2 3]);
%! rgb_uint8  = reshape (uint8 ([255 0 255 128 255 255 0 128 0 255 255 128]),
%!                       [2 2 3]);
%! rgb_int16 = int16 (double (rgb_double * uint16 (65535)) -32768);
%! expected = reshape ([1/6 1/2 5/6 0 1 1 1 0 1 1 1 .5], [2 2 3]);
%!
%! assert (rgb2hsv (rgb_double), expected);
%! assert (rgb2hsv (rgb_uint8), expected, 0.005);
%! assert (rgb2hsv (single (rgb_double)), single (expected));