view scripts/set/uniquetol.m @ 30920:47cbc69e66cd

eliminate direct access to call stack from evaluator The call stack is an internal implementation detail of the evaluator. Direct access to it outside of the evlauator should not be needed. * pt-eval.h (tree_evaluator::get_call_stack): Delete.
author John W. Eaton <jwe@octave.org>
date Fri, 08 Apr 2022 15:19:22 -0400
parents 796f54d4ddbf
children df030ac26390
line wrap: on
line source

########################################################################
##
## Copyright (C) 2020-2022 The Octave Project Developers
##
## See the file COPYRIGHT.md in the top-level directory of this
## distribution or <https://octave.org/copyright/>.
##
## This file is part of Octave.
##
## Octave is free software: you can redistribute it and/or modify it
## under the terms of the GNU General Public License as published by
## the Free Software Foundation, either version 3 of the License, or
## (at your option) any later version.
##
## Octave is distributed in the hope that it will be useful, but
## WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
## GNU General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with Octave; see the file COPYING.  If not, see
## <https://www.gnu.org/licenses/>.
##
########################################################################

## -*- texinfo -*-
## @deftypefn  {} {@var{c} =} uniquetol (@var{A})
## @deftypefnx {} {@var{c} =} uniquetol (@var{A}, @var{tol})
## @deftypefnx {} {@var{c} =} uniquetol (@dots{}, @var{property}, @var{value})
## @deftypefnx {} {[@var{c}, @var{ia}, @var{ic}] =} uniquetol (@dots{})
## Return the unique elements of @var{A} within tolerance @var{tol}.
##
## Two values, @var{x} and @var{y}, are within relative tolerance if
## @code{abs (@var{x} - @var{y}) <= @var{tol} * max (abs (@var{A}(:)))}.
##
## The input @var{A} must be a floating point type (double or single).
##
## If @var{tol} is unspecified, the default tolerance is 1e-12 for double
## precision input or 1e-6 for single precision input.
##
## The function may also be called with the following optional property/value
## pairs.  Property/value pairs must be passed after other input arguments:
##
## @table @asis
## @item @qcode{"ByRows"} (default: @code{false})
## When true, return the unique rows of @var{A}.  @var{A} must be a 2-D array
## to use this option.  For rows, the criteria for uniqueness is changed to
## @code{all (abs (@var{x} - @var{y}) <= @var{tol}*max (abs (@var{A}),[],1))}
## which compares each column component of a row against a column-specific
## tolerance.
##
## @item @qcode{"DataScale"}
## The tolerance test is changed to
## @code{abs (@var{x} - @var{y}) <= @var{tol}*@var{DS}} where @var{DS} is a
## scalar unless the property @qcode{"ByRows"} is true.  In that case, @var{DS}
## can either be a scalar or a vector with a length equal to the number of
## columns in @var{A}.  Using a value of @code{1.0} for @var{DS} will change
## the tolerance from a relative one to an absolute tolerance.  Using a value
## of @code{Inf} will disable testing.
##
## @item @qcode{"OutputAllIndices"} (default: @code{false})
## When true, @var{ia} is a cell array (not a vector) that contains the indices
## for @emph{all} elements in @var{A} that are within tolerance of a value in
## @var{C}.  That is, each cell in @var{ia} corresponds to a single unique
## value in @var{C}, and the values in each cell correspond to locations in
## @var{A}.
## @end table
##
## The output @var{c} is a row vector if the input @var{A} is a row vector.
## For all other cases, a column vector is returned.
##
## The optional output @var{ia} is a column index vector such that
## @code{@var{c} = @var{A}(@var{ia})}.  If the @qcode{"ByRows"} property is
## true, the condition is @code{@var{c} = @var{A}(@var{ia}, :)}.  If the
## @qcode{"OutputAllIndices"} property is true, then the values
## @code{@var{A}(@var{ia}@{@var{i}@})} are all within tolerance of the unique
## value @code{@var{c}(@var{i})}.
##
## The optional output @var{ic} is a column index vector such that
## @code{@var{A} = @var{c}(@var{ic})} when @var{A} is a vector.  When @var{A}
## is a matrix, @code{@var{A}(:) = @var{c}(@var{ic})}.  If the @qcode{"ByRows"}
## property is true then @code{@var{A} = @var{c}(@var{ic},:)}.
##
## Example: small round-off errors require @code{uniquetol}, not @code{unique}
##
## @example
## @group
## x = [1:5];
## ## Inverse_Function (Function (x)) should return exactly x
## y = exp (log (x));
## D = unique ([x, y])
## @result{} [1.0000   2.0000   3.0000   3.0000   4.0000   5.0000   5.0000]
## C = uniquetol ([x, y])
## @result{} [1   2   3   4   5]
## @end group
## @end example
##
## @seealso{unique, union, intersect, setdiff, setxor, ismember}
## @end deftypefn


function [c, ia, ic] = uniquetol (A, varargin)

  if (nargin < 1)
    print_usage ();
  endif

  if (isempty (A))
    c = A;
    ia = [];
    ic = [];
    return;
  endif

  if (! isfloat (A) || iscomplex (A))
    error ("Octave:uniquetol:unsupported-type",
           "uniquetol: A must be a double or single precision non-complex array");
  endif

  if (nargin == 1 || ischar (varargin{1}))
    tol = ifelse (isa (A, "double"), 1e-12, 1e-6);
  elseif (! (isfloat (varargin{1}) && isscalar (varargin{1}))
          || iscomplex (varargin{1}))
    error ("Octave:uniquetol:unsupported-type",
           "uniquetol: TOL must be a double or single precision non-complex scalar");
  else
    tol = varargin{1};
    varargin(1) = [];
  endif

  if (mod (numel (varargin), 2))
    error ("uniquetol: PROPERTY/VALUE arguments must be passed in pairs");
  endif

  by_rows = false;
  output_all_indices = false;
  data_scale = [];

  for k = 1:2:numel (varargin)
    if (! ischar (varargin{k}))
      error ("uniquetol: PROPERTY must be a string");
    endif

    if (strcmpi (varargin{k}, "ByRows"))
      by_rows = logical (varargin{k+1});
      if (by_rows && ndims (A) > 2)
        error ('uniquetol: A must be a 2-D array when "ByRows" is true');
      endif
    elseif (strcmpi (varargin{k}, "OutputAllIndices"))
      output_all_indices = logical (varargin{k+1});
    elseif (strcmpi (varargin{k}, "DataScale"))
      data_scale = varargin{k+1}(:).';
      if (! isfloat (data_scale) || iscomplex (data_scale)
          || any (data_scale(:) < 0) || any (isnan (data_scale(:))))
        error ("uniquetol: DataScale must be a non-NaN, positive floating point scalar or vector");
      endif
      cols_data_scale = columns (data_scale);
      if (cols_data_scale != 1 && cols_data_scale != columns (A))
        error ("uniquetol: invalid DataScale size");
      endif
    else
      error ("uniquetol: unknown property '%s'", varargin{k});
    endif
  endfor

  if (isempty (data_scale))
    data_scale = max (abs (A(! isinf (A))(:)));
  endif

  tol *= data_scale;

  if (by_rows)

    nr = rows (A);
    nc = columns (A);
    Iall = zeros (nr, 1);
    I = NaN (nc, 1);
    ia = {};
    J = NaN (nc, 1);
    j = 1;
    ii = 0;

    for i = 1:nr
      if (any (Iall == i))
        continue;
      else
        equ = all (abs (A - A(i,:)) <= tol, 2);
        equ(i,1) = equ(i,1) || any (! isfinite (A(i,:)), 2);
        sumeq = sum (equ);
        ia_tmp = find (equ);
        if (output_all_indices)
          ia{end+1} = ia_tmp;
        endif
        Iall(ii+(1:sumeq)) = ia_tmp;
        I(j) = ia_tmp(1);
        J(equ) = j;
        ii += sumeq;
        j += 1;
      endif
    endfor

    I(isnan (I)) = [];
    J(isnan (J)) = [];
    c = A(I,:);

    if (! output_all_indices)
      ia = I(1:j-1);
    endif
    ic = J;

  else
    isrowvec = isrow (A);
    A = A(:);
    nr = rows (A);
    isnanA = isnan (A);
    anyisnanA = any (isnanA);
    [sortA, sAi] = sort (A);
    diffsortA = diff (sortA);
    isinfsortA = isinf (sortA);
    isnansortA = isnan (sortA);
    numnan = sum (isnansortA);
    if (any (isinfsortA))
      sAnin = sortA(! (isinfsortA | isnansortA));
      diffsortA(isinf (diffsortA)) = abs (sAnin(end) - sAnin(1)) + 10;
    endif
    csdx = cumsum (diffsortA);
    ue = [true; diff([0; csdx-mod(csdx,tol)]) > eps(max(csdx))];
    ueold = NaN;
    while (any (ueold != ue))
      ueold = ue;
      belowtol = [false; diff(sortA(ue)) < tol];
      if (any (belowtol))
        needstomove = find (ue)(belowtol);
        ue(needstomove) = false;
        needstomove(needstomove >= nr-numnan) = [];
        ue(needstomove+1) = true;
      endif
    endwhile
    c = sortA(ue);
    [~, sortsAi] = sort (sAi);
    cumsumue = cumsum (ue);
    ic = cumsumue(sortsAi);
    if (anyisnanA)
      findisnanA = find (isnanA);
    else
      findisnanA = [];
    endif
    if (output_all_indices)
      nu = cumsumue(end);
      ia = cell (1, nu);
      for k = 1:nu
        ia{k} = setdiff (sAi(cumsumue==k), findisnanA);
      endfor
    else
      ia = sAi(ue);
    endif

    if (anyisnanA)
      rowsc1 = rows (c) + (1:sum (isnanA));
      c(rowsc1) = NaN;
      ia(rowsc1) = findisnanA;
      ic(isnanA) = rowsc1;
    endif

    ## FIXME: Matlab-compatible orientation of output
    ## Actually, Matlab prefers row vectors (2021/03/24), but this is different
    ## from all the other set functions which prefer column vectors.  Assume
    ## that this is a bug in Matlab's implementation and prefer column vectors.
    if (isrowvec)
      c = c.';
    endif

  endif

endfunction


%!assert (uniquetol ([1 1 2; 1 2 1; 1 1 2+10*eps]), [1;2])
%!assert (uniquetol ([1 1 2; 1 0 1; 1 1 2+10*eps], "byrows", true),
%!        [1 1 2; 1 0 1])
%!assert (uniquetol ([]), [])
%!assert (uniquetol ([1]), [1])
%!assert (uniquetol ([2, 1]), [1, 2]);
%!assert (uniquetol ([1; 2]), [1; 2])
%!assert (uniquetol ([-Inf, 1, NaN, Inf, NaN, Inf]), [-Inf, 1, Inf, NaN, NaN]);
%!assert (uniquetol (zeros (1, 0)), zeros (1, 0));
%!assert (uniquetol (zeros (1, 0), "byrows", true), zeros (1, 0))
%!assert (uniquetol ([1,2,2,3,2,4], "byrows", true), [1,2,2,3,2,4])
%!assert (uniquetol ([1,2,2,3,2,4]), [1,2,3,4])
%!assert (uniquetol ([1,2,2,3,2,4].', "byrows", true), [1;2;3;4])
%!assert (uniquetol (sparse ([2,0;2,0])), sparse ([0;2]))
%!assert (uniquetol (sparse ([1,2;2,3])), sparse ([1;2;3]))
%!assert (uniquetol (single ([1,2,2,3,2,4]), "byrows", true),
%!        single ([1,2,2,3,2,4]))
%!assert (uniquetol (single ([1,2,2,3,2,4])), single ([1,2,3,4]))
%!assert (uniquetol (single ([1,2,2,3,2,4].'), "byrows", true),
%!        single ([1;2;3;4]))

## Matlab compatibility of output
%!test
%! x = 1:0.045:3;
%! y = uniquetol (x, 0.1, "datascale", 1);
%! assert (y(1:4), [1, 1.135, 1.27, 1.405]);

## Test index vector return arguments
%!test
%! [c, ia, ic] = uniquetol ([1,1,2,3,3,3,4]);
%! assert (c, [1,2,3,4]);
%! assert (ia, [1;3;4;7]);
%! assert (ic, [1;1;2;3;3;3;4]);

## Test index vector return arguments with "ByRows"
%!test
%! A = [2, 3, 4; 2, 3, 4];
%! [c, ia, ic] = uniquetol (A, "byrows", true);
%! assert (c, [2, 3, 4]);
%! assert (A(ia,:), c);
%! assert (c(ic,:), A);

%!test
%! x = (2:7)'*pi;
%! y = exp (log (x));
%! C = uniquetol ([x; y]);
%! assert (C, x, 1e-12);

## Test "ByRows" Property
%!test
%! A = [0.06, 0.21, 0.38; 0.38, 0.21, 0.39; 0.54, 0.56, 0.41; 0.46, 0.52, 0.95];
%! B = log (exp (A));
%! C = uniquetol ([A; B], "ByRows", true);
%! assert (C, A);

## Test "DataScale" Property
%!test
%! x = 10^11;
%! C = uniquetol ([x, exp(log(x))], 1e-6, "DataScale", 1);
%! assert (C, [x, exp(log(x))]);

## Test "OutputAllIndices" Property
%!test
%! A = [.1 .2 .3 10];
%! [C, ia, ic] = uniquetol (A, .1, "OutputAllIndices", true);
%! assert (C, [.1, 10]);
%! assert (ia, {(1:3)', 4});
%! assert (ic, [1; 1; 1; 2]);

## Test input validation
%!error <Invalid call> uniquetol ()
%!error <A must be a double or single precision> uniquetol (int8 (1))
%!error <A must be .* non-complex> uniquetol (1i)
%!error <TOL must be a double .* precision> uniquetol (1, int8 (1))
%!error <TOL must be a .* scalar> uniquetol (1, [1, 2])
%!error <TOL must be .* non-complex> uniquetol (1, 1i)
%!error <arguments must be passed in pairs> uniquetol (1, 2, "byrows")
%!error <PROPERTY must be a string> uniquetol (1, 2, 3, "bar")
%!error <A must be a 2-D array> uniquetol (ones (2,2,2), "byrows", true)
%!error <DataScale must be a .* floating point> uniquetol (1, "DataScale", '1')
%!error <DataScale must be .* positive> uniquetol (1, "DataScale", -1)
%!error <DataScale must be .* positive> uniquetol (1, "DataScale", 1i)
%!error <DataScale must be a non-NaN> uniquetol (1, "DataScale", NaN)
%!error <invalid DataScale size> uniquetol (1, "DataScale", [1 2])
%!error <unknown property 'foo'> uniquetol (1, "foo", "bar")
%!error <unknown property 'foo'> uniquetol (1, 2, "foo", "bar")