view libinterp/octave-value/ov-flt-cx-mat.cc @ 28126:4c21f99b4ad5

handle interleaved complex data and new typed data access functions for mex * mexproto.h, mex.cc, mxarray.h (mxMakeArrayReal, mxMakeArrayComplex, mxGetDoubles, mxGetSingles, mxGetInt8s, mxGetInt16s, mxGetInt32s, mxGetInt64s, mxGetUint8s, mxGetUint16s, mxGetUint32s, mxGetUint64s, mxGetComplexDoubles, mxGetComplexSingles, mxSetDoubles, mxSetSingles, mxSetInt8s, mxSetInt16s, mxSetInt32s, mxSetInt64s, mxSetUint8s, mxSetUint16s, mxSetUint32s, mxSetUint64s, mxSetComplexDoubles, mxSetComplexSingles): New functions. Provide corresponding member functions in mxArray class hierarchy to handle the actual operations. (mxGetComplexInt8s, mxGetComplexInt16s, mxGetComplexInt32s, mxGetComplexInt64s, mxGetComplexUint8s, mxGetComplexUint16s, mxGetComplexUint32s, mxGetComplexUint64s, mxSetComplexInt8s, mxSetComplexInt16s, mxSetComplexInt32s, mxSetComplexInt64s, mxSetComplexUint8s, mxSetComplexUint16s, mxSetComplexUint32s, mxSetComplexUint64s): Add prototypes and functions, but leave commented out since we don't have complex integer data. (class mxArray_number, class mxArray_sparse): Handle interleaved complex data. In mxArray_octave_value and mxArray_matlab constructors, handle interleaved flag in constructor to determine data layout to use when creating mxArray_number or mxArray_sparse objects. (mex::make_value): Check flag in mex function to determine whether to create arrays with interleaved complex. * ov.h, ov.cc, ov-base.h, ov-base.cc, ov-base-diag.h, ov-base-diag.cc, ov-bool-mat.h, ov-bool-mat.cc, ov-bool-sparse.h, ov-bool-sparse.cc, ov-bool.h, ov-bool.cc, ov-cell.h, ov-cell.cc, ov-ch-mat.h, ov-ch-mat.cc, ov-class.h, ov-class.cc, ov-complex.h, ov-complex.cc, ov-cx-mat.h, ov-cx-mat.cc, ov-cx-sparse.h, ov-cx-sparse.cc, ov-float.h, ov-float.cc, ov-flt-complex.h, ov-flt-complex.cc, ov-flt-cx-mat.h, ov-flt-cx-mat.cc, ov-flt-re-mat.h, ov-flt-re-mat.cc, ov-intx.h, ov-lazy-idx.h, ov-perm.h, ov-perm.cc, ov-range.h, ov-range.cc, ov-re-mat.h, ov-re-mat.cc, ov-re-sparse.h, ov-re-sparse.cc, ov-scalar.h, ov-scalar.cc, ov-struct.h, ov-struct.cc: In all as_mxArray methods, handle new interleaved input to optionally create objects that will use interleaved complex data.
author John W. Eaton <jwe@octave.org>
date Tue, 18 Feb 2020 13:16:41 -0500
parents bd51beb6205e
children 7854d5752dd2
line wrap: on
line source

////////////////////////////////////////////////////////////////////////
//
// Copyright (C) 1996-2020 The Octave Project Developers
//
// See the file COPYRIGHT.md in the top-level directory of this
// distribution or <https://octave.org/copyright/>.
//
// This file is part of Octave.
//
// Octave is free software: you can redistribute it and/or modify it
// under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// Octave is distributed in the hope that it will be useful, but
// WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with Octave; see the file COPYING.  If not, see
// <https://www.gnu.org/licenses/>.
//
////////////////////////////////////////////////////////////////////////

#if defined (HAVE_CONFIG_H)
#  include "config.h"
#endif

#include <istream>
#include <ostream>
#include <vector>

#include "dNDArray.h"
#include "fNDArray.h"

#include "data-conv.h"
#include "lo-ieee.h"
#include "lo-specfun.h"
#include "lo-mappers.h"
#include "mx-base.h"
#include "mach-info.h"
#include "oct-locbuf.h"

#include "errwarn.h"
#include "mxarray.h"
#include "ovl.h"
#include "oct-hdf5.h"
#include "oct-stream.h"
#include "ops.h"
#include "ov-base.h"
#include "ov-base-mat.h"
#include "ov-base-mat.cc"
#include "ov-complex.h"
#include "ov-flt-complex.h"
#include "ov-cx-mat.h"
#include "ov-flt-cx-mat.h"
#include "ov-re-mat.h"
#include "ov-flt-re-mat.h"
#include "ov-scalar.h"
#include "ov-float.h"
#include "pr-output.h"
#include "ops.h"

#include "byte-swap.h"
#include "ls-oct-text.h"
#include "ls-hdf5.h"
#include "ls-utils.h"


template class octave_base_matrix<FloatComplexNDArray>;

DEFINE_OV_TYPEID_FUNCTIONS_AND_DATA (octave_float_complex_matrix,
                                     "float complex matrix", "single");

octave_base_value *
octave_float_complex_matrix::try_narrowing_conversion (void)
{
  octave_base_value *retval = nullptr;

  if (matrix.numel () == 1)
    {
      FloatComplex c = matrix (0);

      if (c.imag () == 0.0)
        retval = new octave_float_scalar (c.real ());
      else
        retval = new octave_float_complex (c);
    }
  else if (matrix.all_elements_are_real ())
    retval = new octave_float_matrix (::real (matrix));

  return retval;
}

double
octave_float_complex_matrix::double_value (bool force_conversion) const
{
  if (! force_conversion)
    warn_implicit_conversion ("Octave:imag-to-real",
                              "complex matrix", "real scalar");

  if (rows () == 0 || columns () == 0)
    err_invalid_conversion ("complex matrix", "real scalar");

  warn_implicit_conversion ("Octave:array-to-scalar",
                            "complex matrix", "real scalar");

  return std::real (matrix(0, 0));
}

float
octave_float_complex_matrix::float_value (bool force_conversion) const
{
  if (! force_conversion)
    warn_implicit_conversion ("Octave:imag-to-real",
                              "complex matrix", "real scalar");

  if (rows () == 0 || columns () == 0)
    err_invalid_conversion ("complex matrix", "real scalar");

  warn_implicit_conversion ("Octave:array-to-scalar",
                            "complex matrix", "real scalar");

  return std::real (matrix(0, 0));
}

Matrix
octave_float_complex_matrix::matrix_value (bool force_conversion) const
{
  Matrix retval;

  if (! force_conversion)
    warn_implicit_conversion ("Octave:imag-to-real",
                              "complex matrix", "real matrix");

  retval = ::real (FloatComplexMatrix (matrix));

  return retval;
}

FloatMatrix
octave_float_complex_matrix::float_matrix_value (bool force_conversion) const
{
  FloatMatrix retval;

  if (! force_conversion)
    warn_implicit_conversion ("Octave:imag-to-real",
                              "complex matrix", "real matrix");

  retval = ::real (FloatComplexMatrix (matrix));

  return retval;
}

Complex
octave_float_complex_matrix::complex_value (bool) const
{
  if (rows () == 0 || columns () == 0)
    err_invalid_conversion ("complex matrix", "complex scalar");

  warn_implicit_conversion ("Octave:array-to-scalar",
                            "complex matrix", "complex scalar");

  return matrix(0, 0);
}

FloatComplex
octave_float_complex_matrix::float_complex_value (bool) const
{
  float tmp = lo_ieee_float_nan_value ();

  FloatComplex retval (tmp, tmp);

  if (rows () == 0 || columns () == 0)
    err_invalid_conversion ("complex matrix", "complex scalar");

  warn_implicit_conversion ("Octave:array-to-scalar",
                            "complex matrix", "complex scalar");

  retval = matrix(0, 0);

  return retval;
}

ComplexMatrix
octave_float_complex_matrix::complex_matrix_value (bool) const
{
  return FloatComplexMatrix (matrix);
}

FloatComplexMatrix
octave_float_complex_matrix::float_complex_matrix_value (bool) const
{
  return FloatComplexMatrix (matrix);
}

boolNDArray
octave_float_complex_matrix::bool_array_value (bool warn) const
{
  if (matrix.any_element_is_nan ())
    octave::err_nan_to_logical_conversion ();
  if (warn && (! matrix.all_elements_are_real ()
               || real (matrix).any_element_not_one_or_zero ()))
    warn_logical_conversion ();

  return mx_el_ne (matrix, FloatComplex (0.0));
}

charNDArray
octave_float_complex_matrix::char_array_value (bool frc_str_conv) const
{
  charNDArray retval;

  if (! frc_str_conv)
    warn_implicit_conversion ("Octave:num-to-str",
                              "complex matrix", "string");
  else
    {
      retval = charNDArray (dims ());
      octave_idx_type nel = numel ();

      for (octave_idx_type i = 0; i < nel; i++)
        retval.elem (i) = static_cast<char> (std::real (matrix.elem (i)));
    }

  return retval;
}

FloatComplexNDArray
octave_float_complex_matrix::float_complex_array_value (bool) const
{
  return FloatComplexNDArray (matrix);
}

SparseMatrix
octave_float_complex_matrix::sparse_matrix_value (bool force_conversion) const
{
  SparseMatrix retval;

  if (! force_conversion)
    warn_implicit_conversion ("Octave:imag-to-real",
                              "complex matrix", "real matrix");

  retval = SparseMatrix (::real (complex_matrix_value ()));

  return retval;
}

SparseComplexMatrix
octave_float_complex_matrix::sparse_complex_matrix_value (bool) const
{
  return SparseComplexMatrix (complex_matrix_value ());
}

octave_value
octave_float_complex_matrix::as_double (void) const
{
  return ComplexNDArray (matrix);
}

octave_value
octave_float_complex_matrix::as_single (void) const
{
  return matrix;
}

octave_value
octave_float_complex_matrix::diag (octave_idx_type k) const
{
  octave_value retval;
  if (k == 0 && matrix.ndims () == 2
      && (matrix.rows () == 1 || matrix.columns () == 1))
    retval = FloatComplexDiagMatrix (DiagArray2<FloatComplex> (matrix));
  else
    retval = octave_base_matrix<FloatComplexNDArray>::diag (k);

  return retval;
}

octave_value
octave_float_complex_matrix::diag (octave_idx_type m, octave_idx_type n) const
{
  if (matrix.ndims () != 2
      || (matrix.rows () != 1 && matrix.columns () != 1))
    error ("diag: expecting vector argument");

  FloatComplexMatrix mat (matrix);

  return mat.diag (m, n);
}

bool
octave_float_complex_matrix::save_ascii (std::ostream& os)
{
  dim_vector dv = dims ();
  if (dv.ndims () > 2)
    {
      FloatComplexNDArray tmp = complex_array_value ();

      os << "# ndims: " << dv.ndims () << "\n";

      for (int i = 0; i < dv.ndims (); i++)
        os << ' ' << dv(i);

      os << "\n" << tmp;
    }
  else
    {
      // Keep this case, rather than use generic code above for backward
      // compatibility.  Makes load_ascii much more complex!!
      os << "# rows: " << rows () << "\n"
         << "# columns: " << columns () << "\n";

      os << complex_matrix_value ();
    }

  return true;
}

bool
octave_float_complex_matrix::load_ascii (std::istream& is)
{
  string_vector keywords(2);

  keywords[0] = "ndims";
  keywords[1] = "rows";

  std::string kw;
  octave_idx_type val = 0;

  if (! extract_keyword (is, keywords, kw, val, true))
    error ("load: failed to extract number of rows and columns");

  if (kw == "ndims")
    {
      int mdims = static_cast<int> (val);

      if (mdims < 0)
        error ("load: failed to extract number of dimensions");

      dim_vector dv;
      dv.resize (mdims);

      for (int i = 0; i < mdims; i++)
        is >> dv(i);

      if (! is)
        error ("load: failed to read dimensions");

      FloatComplexNDArray tmp(dv);

      is >> tmp;

      if (! is)
        error ("load: failed to load matrix constant");

      matrix = tmp;
    }
  else if (kw == "rows")
    {
      octave_idx_type nr = val;
      octave_idx_type nc = 0;

      if (nr < 0 || ! extract_keyword (is, "columns", nc) || nc < 0)
        error ("load: failed to extract number of rows and columns");

      if (nr > 0 && nc > 0)
        {
          FloatComplexMatrix tmp (nr, nc);
          is >> tmp;
          if (! is)
            error ("load: failed to load matrix constant");

          matrix = tmp;
        }
      else if (nr == 0 || nc == 0)
        matrix = FloatComplexMatrix (nr, nc);
      else
        panic_impossible ();
    }
  else
    panic_impossible ();

  return true;
}

bool
octave_float_complex_matrix::save_binary (std::ostream& os, bool)
{
  dim_vector dv = dims ();
  if (dv.ndims () < 1)
    return false;

  // Use negative value for ndims to differentiate with old format!!
  int32_t tmp = - dv.ndims ();
  os.write (reinterpret_cast<char *> (&tmp), 4);
  for (int i = 0; i < dv.ndims (); i++)
    {
      tmp = dv(i);
      os.write (reinterpret_cast<char *> (&tmp), 4);
    }

  FloatComplexNDArray m = complex_array_value ();
  save_type st = LS_FLOAT;
  if (dv.numel () > 4096) // FIXME: make this configurable.
    {
      float max_val, min_val;
      if (m.all_integers (max_val, min_val))
        st = get_save_type (max_val, min_val);
    }

  const FloatComplex *mtmp = m.data ();
  write_floats (os, reinterpret_cast<const float *> (mtmp), st,
                2 * dv.numel ());

  return true;
}

bool
octave_float_complex_matrix::load_binary (std::istream& is, bool swap,
                                          octave::mach_info::float_format fmt)
{
  char tmp;
  int32_t mdims;
  if (! is.read (reinterpret_cast<char *> (&mdims), 4))
    return false;
  if (swap)
    swap_bytes<4> (&mdims);
  if (mdims < 0)
    {
      mdims = - mdims;
      int32_t di;
      dim_vector dv;
      dv.resize (mdims);

      for (int i = 0; i < mdims; i++)
        {
          if (! is.read (reinterpret_cast<char *> (&di), 4))
            return false;
          if (swap)
            swap_bytes<4> (&di);
          dv(i) = di;
        }

      // Convert an array with a single dimension to be a row vector.
      // Octave should never write files like this, other software
      // might.

      if (mdims == 1)
        {
          mdims = 2;
          dv.resize (mdims);
          dv(1) = dv(0);
          dv(0) = 1;
        }

      if (! is.read (reinterpret_cast<char *> (&tmp), 1))
        return false;

      FloatComplexNDArray m(dv);
      FloatComplex *im = m.fortran_vec ();
      read_floats (is, reinterpret_cast<float *> (im),
                   static_cast<save_type> (tmp), 2 * dv.numel (), swap, fmt);

      if (! is)
        return false;

      matrix = m;
    }
  else
    {
      int32_t nr, nc;
      nr = mdims;
      if (! is.read (reinterpret_cast<char *> (&nc), 4))
        return false;
      if (swap)
        swap_bytes<4> (&nc);
      if (! is.read (reinterpret_cast<char *> (&tmp), 1))
        return false;
      FloatComplexMatrix m (nr, nc);
      FloatComplex *im = m.fortran_vec ();
      octave_idx_type len = nr * nc;
      read_floats (is, reinterpret_cast<float *> (im),
                   static_cast<save_type> (tmp), 2*len, swap, fmt);

      if (! is)
        return false;

      matrix = m;
    }
  return true;
}

bool
octave_float_complex_matrix::save_hdf5 (octave_hdf5_id loc_id, const char *name,
                                        bool)
{
  bool retval = false;

#if defined (HAVE_HDF5)

  dim_vector dv = dims ();
  int empty = save_hdf5_empty (loc_id, name, dv);
  if (empty)
    return (empty > 0);

  int rank = dv.ndims ();
  hid_t space_hid, data_hid, type_hid;
  space_hid = data_hid = type_hid = -1;
  FloatComplexNDArray m = complex_array_value ();

  OCTAVE_LOCAL_BUFFER (hsize_t, hdims, rank);

  // Octave uses column-major, while HDF5 uses row-major ordering
  for (int i = 0; i < rank; i++)
    hdims[i] = dv(rank-i-1);

  space_hid = H5Screate_simple (rank, hdims, nullptr);
  if (space_hid < 0) return false;

  hid_t save_type_hid = H5T_NATIVE_FLOAT;

#if defined (HAVE_HDF5_INT2FLOAT_CONVERSIONS)
  // hdf5 currently doesn't support float/integer conversions
  else
    {
      float max_val, min_val;

      if (m.all_integers (max_val, min_val))
        save_type_hid
          = save_type_to_hdf5 (get_save_type (max_val, min_val));
    }
#endif

  type_hid = hdf5_make_complex_type (save_type_hid);
  if (type_hid < 0)
    {
      H5Sclose (space_hid);
      return false;
    }
#if defined (HAVE_HDF5_18)
  data_hid = H5Dcreate (loc_id, name, type_hid, space_hid,
                        octave_H5P_DEFAULT, octave_H5P_DEFAULT, octave_H5P_DEFAULT);
#else
  data_hid = H5Dcreate (loc_id, name, type_hid, space_hid, octave_H5P_DEFAULT);
#endif
  if (data_hid < 0)
    {
      H5Sclose (space_hid);
      H5Tclose (type_hid);
      return false;
    }

  hid_t complex_type_hid = hdf5_make_complex_type (H5T_NATIVE_FLOAT);
  if (complex_type_hid < 0) retval = false;

  if (retval)
    {
      FloatComplex *mtmp = m.fortran_vec ();
      if (H5Dwrite (data_hid, complex_type_hid, octave_H5S_ALL, octave_H5S_ALL,
                    octave_H5P_DEFAULT, mtmp)
          < 0)
        {
          H5Tclose (complex_type_hid);
          retval = false;
        }
    }

  H5Tclose (complex_type_hid);
  H5Dclose (data_hid);
  H5Tclose (type_hid);
  H5Sclose (space_hid);

#else
  octave_unused_parameter (loc_id);
  octave_unused_parameter (name);

  warn_save ("hdf5");
#endif

  return retval;
}

bool
octave_float_complex_matrix::load_hdf5 (octave_hdf5_id loc_id, const char *name)
{
  bool retval = false;

#if defined (HAVE_HDF5)

  dim_vector dv;
  int empty = load_hdf5_empty (loc_id, name, dv);
  if (empty > 0)
    matrix.resize (dv);
  if (empty)
    return (empty > 0);

#if defined (HAVE_HDF5_18)
  hid_t data_hid = H5Dopen (loc_id, name, octave_H5P_DEFAULT);
#else
  hid_t data_hid = H5Dopen (loc_id, name);
#endif
  hid_t type_hid = H5Dget_type (data_hid);

  hid_t complex_type = hdf5_make_complex_type (H5T_NATIVE_FLOAT);

  if (! hdf5_types_compatible (type_hid, complex_type))
    {
      H5Tclose (complex_type);
      H5Dclose (data_hid);
      return false;
    }

  hid_t space_id = H5Dget_space (data_hid);

  hsize_t rank = H5Sget_simple_extent_ndims (space_id);

  if (rank < 1)
    {
      H5Tclose (complex_type);
      H5Sclose (space_id);
      H5Dclose (data_hid);
      return false;
    }

  OCTAVE_LOCAL_BUFFER (hsize_t, hdims, rank);
  OCTAVE_LOCAL_BUFFER (hsize_t, maxdims, rank);

  H5Sget_simple_extent_dims (space_id, hdims, maxdims);

  // Octave uses column-major, while HDF5 uses row-major ordering
  if (rank == 1)
    {
      dv.resize (2);
      dv(0) = 1;
      dv(1) = hdims[0];
    }
  else
    {
      dv.resize (rank);
      for (hsize_t i = 0, j = rank - 1; i < rank; i++, j--)
        dv(j) = hdims[i];
    }

  FloatComplexNDArray m (dv);
  FloatComplex *reim = m.fortran_vec ();
  if (H5Dread (data_hid, complex_type, octave_H5S_ALL, octave_H5S_ALL,
               octave_H5P_DEFAULT, reim)
      >= 0)
    {
      retval = true;
      matrix = m;
    }

  H5Tclose (complex_type);
  H5Sclose (space_id);
  H5Dclose (data_hid);

#else
  octave_unused_parameter (loc_id);
  octave_unused_parameter (name);

  warn_load ("hdf5");
#endif

  return retval;
}

void
octave_float_complex_matrix::print_raw (std::ostream& os,
                                        bool pr_as_read_syntax) const
{
  octave_print_internal (os, matrix, pr_as_read_syntax,
                         current_print_indent_level ());
}

mxArray *
octave_float_complex_matrix::as_mxArray (bool interleaved) const
{
  mxArray *retval = new mxArray (interleaved, mxSINGLE_CLASS, dims (),
                                 mxCOMPLEX);

  mwSize nel = numel ();

  const FloatComplex *pdata = matrix.data ();

  if (interleaved)
    {
      mxComplexSingle *pd
        = static_cast<mxComplexSingle *> (retval->get_data ());

      for (mwIndex i = 0; i < nel; i++)
        {
          pd[i].real = pdata[i].real ();
          pd[i].imag = pdata[i].imag ();
        }
    }
  else
    {
      mxSingle *pr = static_cast<mxSingle *> (retval->get_data ());
      mxSingle *pi = static_cast<mxSingle *> (retval->get_imag_data ());

      for (mwIndex i = 0; i < nel; i++)
        {
          pr[i] = pdata[i].real ();
          pi[i] = pdata[i].imag ();
        }
    }

  return retval;
}

octave_value
octave_float_complex_matrix::map (unary_mapper_t umap) const
{
  switch (umap)
    {
    // Mappers handled specially.
    case umap_real:
      return ::real (matrix);
    case umap_imag:
      return ::imag (matrix);
    case umap_conj:
      return ::conj (matrix);

    // Special cases for Matlab compatibility.
    case umap_xtolower:
    case umap_xtoupper:
      return matrix;

#define ARRAY_METHOD_MAPPER(UMAP, FCN)        \
    case umap_ ## UMAP:                       \
      return octave_value (matrix.FCN ())

    ARRAY_METHOD_MAPPER (abs, abs);
    ARRAY_METHOD_MAPPER (isnan, isnan);
    ARRAY_METHOD_MAPPER (isinf, isinf);
    ARRAY_METHOD_MAPPER (isfinite, isfinite);

#define ARRAY_MAPPER(UMAP, TYPE, FCN)                 \
    case umap_ ## UMAP:                               \
      return octave_value (matrix.map<TYPE> (FCN))

    ARRAY_MAPPER (acos, FloatComplex, octave::math::acos);
    ARRAY_MAPPER (acosh, FloatComplex, octave::math::acosh);
    ARRAY_MAPPER (angle, float, std::arg);
    ARRAY_MAPPER (arg, float, std::arg);
    ARRAY_MAPPER (asin, FloatComplex, octave::math::asin);
    ARRAY_MAPPER (asinh, FloatComplex, octave::math::asinh);
    ARRAY_MAPPER (atan, FloatComplex, octave::math::atan);
    ARRAY_MAPPER (atanh, FloatComplex, octave::math::atanh);
    ARRAY_MAPPER (erf, FloatComplex, octave::math::erf);
    ARRAY_MAPPER (erfc, FloatComplex, octave::math::erfc);
    ARRAY_MAPPER (erfcx, FloatComplex, octave::math::erfcx);
    ARRAY_MAPPER (erfi, FloatComplex, octave::math::erfi);
    ARRAY_MAPPER (dawson, FloatComplex, octave::math::dawson);
    ARRAY_MAPPER (ceil, FloatComplex, octave::math::ceil);
    ARRAY_MAPPER (cos, FloatComplex, std::cos);
    ARRAY_MAPPER (cosh, FloatComplex, std::cosh);
    ARRAY_MAPPER (exp, FloatComplex, std::exp);
    ARRAY_MAPPER (expm1, FloatComplex, octave::math::expm1);
    ARRAY_MAPPER (fix, FloatComplex, octave::math::fix);
    ARRAY_MAPPER (floor, FloatComplex, octave::math::floor);
    ARRAY_MAPPER (log, FloatComplex, std::log);
    ARRAY_MAPPER (log2, FloatComplex, octave::math::log2);
    ARRAY_MAPPER (log10, FloatComplex, std::log10);
    ARRAY_MAPPER (log1p, FloatComplex, octave::math::log1p);
    ARRAY_MAPPER (round, FloatComplex, octave::math::round);
    ARRAY_MAPPER (roundb, FloatComplex, octave::math::roundb);
    ARRAY_MAPPER (signum, FloatComplex, octave::math::signum);
    ARRAY_MAPPER (sin, FloatComplex, std::sin);
    ARRAY_MAPPER (sinh, FloatComplex, std::sinh);
    ARRAY_MAPPER (sqrt, FloatComplex, std::sqrt);
    ARRAY_MAPPER (tan, FloatComplex, std::tan);
    ARRAY_MAPPER (tanh, FloatComplex, std::tanh);
    ARRAY_MAPPER (isna, bool, octave::math::isna);

    default:
      return octave_base_value::map (umap);
    }
}