view scripts/statistics/corrcoef.m @ 30997:5330efaf9476

Add optional second output to var and std (bug #62395) * scripts/statistics/var.m: Add optional second output containing the mean used to calculate the variance. Move weight isempty check ahead of vector dimension isscalar check to avoid triggering incompatability error. Add BISTs testing second output with different calling options. Add BIST testing empty value passed as variance weight treated as zero. Add new output behavior to docstring, and update function definitions to show the primary variable. * scripts/statistics/std.m: Add passthrough for second output from var when std called with two outputs. Add BISTs testing second output with different calling options. Update docstring noting new output behavior. * etc/NEWS.8.md: Note output changes to var and std under Matlab Compatability.
author Nicholas R. Jankowski <jankowski.nicholas@gmail.com>
date Thu, 12 May 2022 13:10:52 -0400
parents 796f54d4ddbf
children 597f3ee61a48
line wrap: on
line source

########################################################################
##
## Copyright (C) 2016-2022 The Octave Project Developers
##
## See the file COPYRIGHT.md in the top-level directory of this
## distribution or <https://octave.org/copyright/>.
##
## This file is part of Octave.
##
## Octave is free software: you can redistribute it and/or modify it
## under the terms of the GNU General Public License as published by
## the Free Software Foundation, either version 3 of the License, or
## (at your option) any later version.
##
## Octave is distributed in the hope that it will be useful, but
## WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
## GNU General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with Octave; see the file COPYING.  If not, see
## <https://www.gnu.org/licenses/>.
##
########################################################################

## -*- texinfo -*-
## @deftypefn  {} {@var{r} =} corrcoef (@var{x})
## @deftypefnx {} {@var{r} =} corrcoef (@var{x}, @var{y})
## @deftypefnx {} {@var{r} =} corrcoef (@dots{}, @var{param}, @var{value}, @dots{})
## @deftypefnx {} {[@var{r}, @var{p}] =} corrcoef (@dots{})
## @deftypefnx {} {[@var{r}, @var{p}, @var{lci}, @var{hci}] =} corrcoef (@dots{})
## Compute a matrix of correlation coefficients.
##
## @var{x} is an array where each column contains a variable and each row is
## an observation.
##
## If a second input @var{y} (of the same size as @var{x}) is given then
## calculate the correlation coefficients between @var{x} and @var{y}.
##
## @var{param}, @var{value} are optional pairs of parameters and values which
## modify the calculation.  Valid options are:
##
## @table @asis
## @item @qcode{"alpha"}
## Confidence level used for the bounds of the confidence interval, @var{lci}
## and @var{hci}.  Default is 0.05, i.e., 95% confidence interval.
##
## @item @qcode{"rows"}
## Determine processing of NaN values.  Acceptable values are @qcode{"all"},
## @qcode{"complete"}, and @qcode{"pairwise"}.  Default is @qcode{"all"}.
## With @qcode{"complete"}, only the rows without NaN values are considered.
## With @qcode{"pairwise"}, the selection of NaN-free rows is made for each
## pair of variables.
## @end table
##
## Output @var{r} is a matrix of Pearson's product moment correlation
## coefficients for each pair of variables.
##
## Output @var{p} is a matrix of pair-wise p-values testing for the null
## hypothesis of a correlation coefficient of zero.
##
## Outputs @var{lci} and @var{hci} are matrices containing, respectively, the
## lower and higher bounds of the 95% confidence interval of each correlation
## coefficient.
## @seealso{corr, cov}
## @end deftypefn

## FIXME: It would be good to add a definition of the calculation method
## for a Pearson product moment correlation to the documentation.

function [r, p, lci, hci] = corrcoef (x, varargin)

  if (nargin == 0)
    print_usage ();
  endif

  alpha = 0.05;
  rows = "all";

  if (nargin > 1)

    ## Check for matrix argument y
    if (isnumeric (varargin{1}))
      y = varargin{1};
      nx = numel (x);
      ny = numel (y);
      if (nx > 0 && ny > 0 && nx != ny)
        error ("corrcoef: X and Y must be the same size");
      endif
      x = [x(:), y(:)];
      varargin(1) = [];
    endif

    ## Check for Parameter/Value arguments
    for i = 1:2:numel (varargin)

      if (! ischar (varargin{i}))
        error ("corrcoef: parameter %d must be a string", i);
      endif
      parameter = varargin{i};
      if (i+1 > numel (varargin))
        error ('corrcoef: parameter "%s" missing value', parameter);
      endif
      value = varargin{i+1};

      switch (tolower (parameter))
        case "alpha"
          if (isnumeric (value) && isscalar (value)
              && value >= 0 && value <= 1)
            alpha = value;
          else
            error ('corrcoef: "alpha" must be a scalar between 0 and 1');
          endif

        case "rows"
          if (! ischar (value))
            error ('corrcoef: "rows" value must be a string');
          endif
          value = tolower (value);
          switch (value)
            case {"all", "complete", "pairwise"}
              rows = value;
            otherwise
              error ('corrcoef: "rows" must be "all", "complete", or "pairwise"');
          endswitch

        otherwise
          error ('corrcoef: Unknown option "%s"', parameter);

      endswitch
    endfor
  endif

  if (strcmp (rows, "complete"))
    x(any (isnan (x), 2), :) = [];
  endif

  if (isempty (x) || isscalar (x))
    r = p = lci = hci = NaN;
    return;
  endif

  ## Flags for calculation
  pairwise = strcmp (rows, "pairwise");
  calc_pval = nargout > 1;

  if (isrow (x))
    x = x(:);
  endif
  [m, n] = size (x);
  r = eye (n);
  if (calc_pval)
    p = eye (n);
  endif
  if (strcmp (rows, "pairwise"))
    mpw = m * ones (n);
  endif
  for i = 1:n
    if (! pairwise && any (isnan (x(:,i))))
      r(i,i) = NaN;
      if (nargout > 1)
        p(i,i) = NaN;
      endif
    endif
    for j = i+1:n
      xi = x(:,i);
      xj = x(:,j);
      if (pairwise)
        idx = any (isnan ([xi xj]), 2);
        xi(idx) = xj(idx) = [];
        mpw(i,j) = mpw(j,i) = m - nnz (idx);
      endif
      r(i,j) = r(j,i) = corr (xi, xj);
      if (calc_pval)
        df = m - 2;
        stat = sqrt (df) * r(i,j) / sqrt (1 - r(i,j)^2);
        cdf = tcdf (stat, df);
        p(i,j) = p(j,i) = 2 * min (cdf, 1 - cdf);
      endif
    endfor
  endfor

  if (nargout > 2)
    if (pairwise)
      m = mpw;
    endif
    CI = sqrt (2) * erfinv (1-alpha) ./ sqrt (m-3);
    lci = tanh (atanh (r) - CI);
    hci = tanh (atanh (r) + CI);
  endif

endfunction


## Compute cumulative distribution function for T distribution.
function cdf = tcdf (x, n)

  if (iscomplex (x))
    error ("tcdf: X must not be complex");
  endif

  if (isa (x, "single"))
    cdf = zeros (size (x), "single");
  else
    cdf = zeros (size (x));
  endif

  k = ! isinf (x) & (n > 0);

  xx = x .^ 2;
  x_big_abs = (xx > n);

  ## deal with the case "abs(x) big"
  kk = k & x_big_abs;
  cdf(kk) = betainc (n ./ (n + xx(kk)), n/2, 1/2) / 2;

  ## deal with the case "abs(x) small"
  kk = k & ! x_big_abs;
  cdf(kk) = 0.5 * (1 - betainc (xx(kk) ./ (n + xx(kk)), 1/2, n/2));

  k &= (x > 0);
  if (any (k(:)))
    cdf(k) = 1 - cdf(k);
  endif

  k = isnan (x) | !(n > 0);
  cdf(k) = NaN;

  k = (x == Inf) & (n > 0);
  cdf(k) = 1;

endfunction


%!test
%! x = rand (5);
%! r = corrcoef (x);
%! assert (size (r) == [5, 5]);

%!test
%! x = [1, 2, 3];
%! r = corrcoef (x);
%! assert (size (r) == [1, 1]);

%!assert (isnan (corrcoef ([])))
%!assert (isnan (corrcoef (NaN)))
%!assert (isnan (corrcoef (1)))

%!test
%! x = [NaN, NaN];
%! r = corrcoef (x);
%! assert (size(r) == [1, 1] && isnan (r));

%!test
%! x = rand (5);
%! [r, p] = corrcoef (x);
%! assert (size (r) == [5, 5] && size (p) == [5 5]);
%! assert (diag (r), ones (5,1), eps);

%!test
%! x = rand (5,1);
%! y = rand (5,1);
%! R1 = corrcoef (x, y);
%! R2 = corrcoef ([x, y]);
%! assert (R1, R2);
%! R3 = corrcoef (x.', y.');
%! assert (R1, R3);

%!test
%! x = [1;2;3];
%! y = [1;2;3];
%! r = corrcoef (x, y);
%! assert (r, ones (2,2));

%!test
%! x = [1;2;3];
%! y = [3;2;1];
%! r = corrcoef (x, y);
%! assert (r, [1, -1; -1, 1]);

%!test
%! x = [1;2;3];
%! y = [1;1;1];
%! r = corrcoef (x, y);
%! assert (r, [1, NaN; NaN, 1]);

%!error <Invalid call> corrcoef ()
%!error <parameter 1 must be a string> corrcoef (1, 2, 3)
%!error <parameter "alpha" missing value> corrcoef (1, 2, "alpha")
%!error <"alpha" must be a scalar> corrcoef (1,2, "alpha", "1")
%!error <"alpha" must be a scalar> corrcoef (1,2, "alpha", ones (2,2))
%!error <"alpha" must be a scalar between 0 and 1> corrcoef (1,2, "alpha", -1)
%!error <"alpha" must be a scalar between 0 and 1> corrcoef (1,2, "alpha", 2)
%!error <"rows" must be "all"...> corrcoef (1,2, "rows", "foobar")
%!error <Unknown option "foobar"> corrcoef (1,2, "foobar", 1)