view scripts/statistics/histc.m @ 30997:5330efaf9476

Add optional second output to var and std (bug #62395) * scripts/statistics/var.m: Add optional second output containing the mean used to calculate the variance. Move weight isempty check ahead of vector dimension isscalar check to avoid triggering incompatability error. Add BISTs testing second output with different calling options. Add BIST testing empty value passed as variance weight treated as zero. Add new output behavior to docstring, and update function definitions to show the primary variable. * scripts/statistics/std.m: Add passthrough for second output from var when std called with two outputs. Add BISTs testing second output with different calling options. Update docstring noting new output behavior. * etc/NEWS.8.md: Note output changes to var and std under Matlab Compatability.
author Nicholas R. Jankowski <jankowski.nicholas@gmail.com>
date Thu, 12 May 2022 13:10:52 -0400
parents 796f54d4ddbf
children 597f3ee61a48
line wrap: on
line source

########################################################################
##
## Copyright (C) 2009-2022 The Octave Project Developers
##
## See the file COPYRIGHT.md in the top-level directory of this
## distribution or <https://octave.org/copyright/>.
##
## This file is part of Octave.
##
## Octave is free software: you can redistribute it and/or modify it
## under the terms of the GNU General Public License as published by
## the Free Software Foundation, either version 3 of the License, or
## (at your option) any later version.
##
## Octave is distributed in the hope that it will be useful, but
## WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
## GNU General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with Octave; see the file COPYING.  If not, see
## <https://www.gnu.org/licenses/>.
##
########################################################################

## -*- texinfo -*-
## @deftypefn  {} {@var{n} =} histc (@var{x}, @var{edges})
## @deftypefnx {} {@var{n} =} histc (@var{x}, @var{edges}, @var{dim})
## @deftypefnx {} {[@var{n}, @var{idx}] =} histc (@dots{})
## Compute histogram counts.
##
## When @var{x} is a vector, the function counts the number of elements of
## @var{x} that fall in the histogram bins defined by @var{edges}.  This
## must be a vector of monotonically increasing values that define the edges
## of the histogram bins.
## @tex
## $n(k)$
## @end tex
## @ifnottex
## @code{@var{n}(k)}
## @end ifnottex
## contains the number of elements in @var{x} for which
## @tex
## $@var{edges}(k) <= @var{x} < @var{edges}(k+1)$.
## @end tex
## @ifnottex
## @code{@var{edges}(k) <= @var{x} < @var{edges}(k+1)}.
## @end ifnottex
## The final element of @var{n} contains the number of elements of @var{x}
## exactly equal to the last element of @var{edges}.
##
## When @var{x} is an @math{N}-dimensional array, the computation is carried
## out along dimension @var{dim}.  If not specified @var{dim} defaults to the
## first non-singleton dimension.
##
## When a second output argument is requested an index matrix is also returned.
## The @var{idx} matrix has the same size as @var{x}.  Each element of
## @var{idx} contains the index of the histogram bin in which the
## corresponding element of @var{x} was counted.
## @seealso{hist}
## @end deftypefn

function [n, idx] = histc (x, edges, dim)

  if (nargin < 2)
    print_usage ();
  endif

  if (! isreal (x))
    error ("histc: X argument must be real-valued, not complex");
  endif

  num_edges = numel (edges);
  if (num_edges == 0)
    warning ("histc: empty EDGES specified\n");
    n = idx = [];
    return;
  endif

  if (! isreal (edges))
    error ("histc: EDGES must be real-valued, not complex");
  else
    ## Make sure 'edges' is sorted
    edges = edges(:);
    if (! issorted (edges) || edges(1) > edges(end))
      warning ("histc: edge values not sorted on input");
      edges = sort (edges);
    endif
  endif

  nd = ndims (x);
  sz = size (x);
  if (nargin < 3)
    ## Find the first non-singleton dimension.
    (dim = find (sz > 1, 1)) || (dim = 1);
  else
    if (!(isscalar (dim) && dim == fix (dim))
        || !(1 <= dim && dim <= nd))
      error ("histc: DIM must be an integer and a valid dimension");
    endif
  endif

  nsz = sz;
  nsz(dim) = num_edges;

  ## the splitting point is 3 bins

  if (num_edges <= 3)

    ## This is the O(M*N) algorithm.

    ## Allocate the histogram
    n = zeros (nsz);

    ## Allocate 'idx'
    if (nargout > 1)
      idx = zeros (sz);
    endif

    ## Prepare indices
    idx1 = cell (1, dim-1);
    for k = 1:length (idx1)
      idx1{k} = 1:sz(k);
    endfor
    idx2 = cell (length (sz) - dim);
    for k = 1:length (idx2)
      idx2{k} = 1:sz(k+dim);
    endfor

    ## Compute the histograms
    for k = 1:num_edges-1
      b = (edges(k) <= x & x < edges(k+1));
      n(idx1{:}, k, idx2{:}) = sum (b, dim);
      if (nargout > 1)
        idx(b) = k;
      endif
    endfor
    b = (x == edges(end));
    n(idx1{:}, num_edges, idx2{:}) = sum (b, dim);
    if (nargout > 1)
      idx(b) = num_edges;
    endif

  else

    ## This is the O(M*log(N) + N) algorithm.

    ## Look-up indices.
    idx = lookup (edges, x);
    ## Zero invalid ones (including NaNs).  x < edges(1) are already zero.
    idx(! (x <= edges(end))) = 0;

    iidx = idx;

    ## In case of matrix input, we adjust the indices.
    if (! isvector (x))
      nl = prod (sz(1:dim-1));
      nn = sz(dim);
      nu = prod (sz(dim+1:end));
      if (nl != 1)
        iidx = (iidx-1) * nl;
        iidx += reshape (kron (ones (1, nn*nu), 1:nl), sz);
      endif
      if (nu != 1)
        ne =length (edges);
        iidx += reshape (kron (nl*ne*(0:nu-1), ones (1, nl*nn)), sz);
      endif
    endif

    ## Select valid elements.
    iidx = iidx(idx != 0);

    ## Call accumarray to sum the indexed elements.
    n = accumarray (iidx(:), 1, nsz);

  endif

endfunction


%!test
%! x = linspace (0, 10, 1001);
%! n = histc (x, 0:10);
%! assert (n, [repmat(100, 1, 10), 1]);

%!test
%! x = repmat (linspace (0, 10, 1001), [2, 1, 3]);
%! n = histc (x, 0:10, 2);
%! assert (n, repmat ([repmat(100, 1, 10), 1], [2, 1, 3]));

## Test input validation
%!error <Invalid call> histc ()
%!error <Invalid call> histc (1)
%!error histc ([1:10 1+i], 2)
%!warning <empty EDGES specified> histc (1:10, []);
%!error histc (1, 1, 3)