view scripts/statistics/var.m @ 30997:5330efaf9476

Add optional second output to var and std (bug #62395) * scripts/statistics/var.m: Add optional second output containing the mean used to calculate the variance. Move weight isempty check ahead of vector dimension isscalar check to avoid triggering incompatability error. Add BISTs testing second output with different calling options. Add BIST testing empty value passed as variance weight treated as zero. Add new output behavior to docstring, and update function definitions to show the primary variable. * scripts/statistics/std.m: Add passthrough for second output from var when std called with two outputs. Add BISTs testing second output with different calling options. Update docstring noting new output behavior. * etc/NEWS.8.md: Note output changes to var and std under Matlab Compatability.
author Nicholas R. Jankowski <jankowski.nicholas@gmail.com>
date Thu, 12 May 2022 13:10:52 -0400
parents 586262153621
children 1bf26f913b9c
line wrap: on
line source

########################################################################
##
## Copyright (C) 1995-2022 The Octave Project Developers
##
## See the file COPYRIGHT.md in the top-level directory of this
## distribution or <https://octave.org/copyright/>.
##
## This file is part of Octave.
##
## Octave is free software: you can redistribute it and/or modify it
## under the terms of the GNU General Public License as published by
## the Free Software Foundation, either version 3 of the License, or
## (at your option) any later version.
##
## Octave is distributed in the hope that it will be useful, but
## WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
## GNU General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with Octave; see the file COPYING.  If not, see
## <https://www.gnu.org/licenses/>.
##
########################################################################

## -*- texinfo -*-
## @deftypefn  {} {@var{v} =} var (@var{x})
## @deftypefnx {} {@var{v} =} var (@var{x}, @var{w})
## @deftypefnx {} {@var{v} =} var (@var{x}, @var{w}, @var{dim})
## @deftypefnx {} {@var{v} =} var (@var{x}, @var{w}, @qcode{"ALL"})
## @deftypefnx {} {[@var{v}, @var{m}] =} var (@dots{})
## Compute the variance of the elements of the vector @var{x}.
##
## The variance is defined as
## @tex
## $$
## {\rm var} (x) = \sigma^2 = {\sum_{i=1}^N (x_i - \bar{x})^2 \over N - 1}
## $$
## where $\bar{x}$ is the mean value of @var{x} and $N$ is the number of
## elements of @var{x}.
##
## @end tex
## @ifnottex
##
## @example
## @group
## var (@var{x}) = 1/(N-1) SUM_i (@var{x}(i) - mean(@var{x}))^2
## @end group
## @end example
##
## @noindent
## where @math{N} is the length of the @var{x} vector.
##
## @end ifnottex
## If @var{x} is an array, compute the variance for each column and return
## them in a row vector (or for an n-D array, the result is returned as
## an array of dimension 1 x n x m x @dots{}).
##
## The optional argument @var{w} determines the weighting scheme to use.  Valid
## values are
##
## @table @asis
## @item 0 [default]:
## Normalize with @math{N-1}.  This provides the square root of the best
## unbiased estimator of the variance.
##
## @item 1:
## Normalize with @math{N}, this provides the square root of the second moment
## around the mean
##
## @item a vector:
## Compute the weighted variance with nonnegative scalar weights.  The length of
## @var{w} must be equal to the size of @var{x} along dimension @var{dim}.
## @end table
##
## If @math{N} is equal to 1 the value of @var{W} is ignored and
## normalization by @math{N} is used.
##
## The optional variable @var{dim} forces @code{var} to operate over the
## specified dimension.  @var{dim} can either be a scalar dimension or a vector
## of non-repeating dimensions over which to operate.  Dimensions must be
## positive integers, and the variance is calculated over the array slice
## defined by @var{dim}.
##
## Specifying dimension @qcode{"ALL"} will force @code{var} to operate on all
## elements of @var{x}, and is equivalent to @code{var (@var{x}(:))}.
##
## When @var{dim} is a vector or @qcode{"ALL"}, @var{w} must be either 0 or 1.
##
## If requested the optional second output variable @var{mu} will contain the
## mean or weighted mean used to calcluate @var{v}, and will be the same size
## as @var{v}.
## @seealso{cov, std, skewness, kurtosis, moment}
## @end deftypefn

function [v, mu] = var (x, w = 0, dim)

  if (nargin < 1)
    print_usage ();
  elseif (nargin < 3)
    dim = [];
  endif

  if (! (isnumeric (x) || islogical (x)))
    error ("var: X must be a numeric vector or matrix");
  endif

  if (isempty (w))
    w = 0;
  endif

  nd = ndims (x);
  sz = size (x);
  emptydimflag = false;

  if (isempty (dim))
    emptydimflag = true;  # Compatibliity hack for empty x, ndims==2

    ## Find the first non-singleton dimension.
   (dim = find (sz != 1, 1)) || (dim = 1);

  else
    if (! (isscalar (dim) && dim == fix (dim) && dim > 0))
      if (isvector (dim) &&
          isnumeric (dim) &&
          all (dim > 0) &&
          all (rem (dim, 1) == 0))
        if (dim != unique (dim, "stable"))
          error (["var: vector DIM must contain non-repeating positive"...
                  "integers"]);
        endif
        ## Check W
        if (! isscalar (w))
          error ("var: W must be either 0 or 1 when DIM is a vector");
        endif

        ## Reshape X to compute the variance over an array slice
        if (iscolumn (dim))
          dim = transpose (dim);
        endif

        collapsed_dims = dim;
        dim = dim(end);

        ## Permute X to cluster the dimensions to collapse
        highest_dim = max ([nd, collapsed_dims]);
        perm_start = perm_end = [1:highest_dim];
        perm_start(dim:end) = [];
        perm_start(ismember (perm_start, collapsed_dims)) = [];
        perm_end(1:dim) = [];
        perm_end(ismember (perm_end, collapsed_dims)) = [];
        perm = [perm_start, collapsed_dims, perm_end];

        x = permute (x, perm);

        ## Collapse the given dimensions
        newshape = ones (1, highest_dim);
        newshape(1:nd) = sz;
        newshape(collapsed_dims(1:(end - 1))) = 1;
        newshape(dim) = prod (sz(collapsed_dims));

        ## New X with collapsed dimensions
        x = reshape (x, newshape);
      elseif (ischar (dim) &&
              strcmp (tolower (dim), "all"))
        ## Check W
        if (! isscalar (w))
          error ("var: W must be either 0 or 1 when using 'ALL' as dimension");
        endif

        ## "ALL" equals to collapsing all elements to a single vector
        x = x(:);
        dim = 1;
        sz = size (x);
      else
        error ("var: DIM must be a positive integer scalar, vector, or 'all'");
      endif
    endif
  endif

  n = size (x, dim);
  if (! isvector (w) ||
          ! isnumeric (w) ||
          (isvector (w) && any (w < 0)) ||
          (isscalar (w) && ((w != 0 && w != 1) && (n != 1))))
    error ("var: W must be 0, 1, or a vector of positive integers");
  endif

  if (isempty (x))
    if (emptydimflag && isequal (sz, [0 0]))
      v = NaN;
      mu = NaN;
    else
      output_size = sz;
      output_size(dim) = 1;
      v = NaN(output_size);
      mu = NaN(output_size);
    endif
  else
    if (n == 1)
      if (! isscalar (w))
        error (["var: the length of W must be equal to the size of X "...
                  "in the dimension along which variance is calculated"])
      else
        if (isa (x, "single"))
          v = zeros (sz, "single");
          mu = x;
        else
          v = zeros (sz);
          mu = x;
        endif
      endif
    else
      if (isscalar (w))
        v = sumsq (center (x, dim), dim) / (n - 1 + w);
        if (nargout == 2)
          mu = mean (x, dim);
        endif
      else
        ## Weighted variance
        if (length (w) != n)
          error (["var: the length of W must be equal to the size of X "...
                  "in the dimension along which variance is calculated"]);
        else
          if ((dim == 1 && rows (w) == 1) ||
              (dim == 2 && columns (w) == 1))
            w = transpose (w);
          elseif (dim > 2)
            newdims = [(ones (1, (dim - 1))), (length (w))];
            w = reshape (w, newdims);
          endif
          den = sum (w);
          mu = sum (w .* x, dim) ./ den;
          v = sum (w .* ((x - mu) .^ 2), dim) ./ den;
        endif
      endif
    endif
  endif

endfunction

%!assert (var (13), 0)
%!assert (var (single (13)), single (0))
%!assert (var ([1,2,3]), 1)
%!assert (var ([1,2,3], 1), 2/3, eps)
%!assert (var ([1,2,3], [], 1), [0,0,0])
%!assert (var ([1,2,3], [], 3), [0,0,0])
%!assert (var (5, 99), 0)
%!assert (var (5, 99, 1), 0)
%!assert (var (5, 99, 2), 0)
%!assert (var ([1:7], [1:7]), 3)
%!assert (var ([eye(3)], [1:3]), [5/36, 2/9, 1/4], eps)
%!assert (var (ones (2,2,2), [1:2], 3), [(zeros (2,2))])
%!assert (var ([1 2; 3 4], 0, 'all'), var ([1:4]))
%!assert (var (reshape ([1:8], 2, 2, 2), 0, [1 3]), [17/3 17/3], eps)
%!assert (var ([1 2 3;1 2 3], [], [1 2]), 0.8, eps)

##Test empty inputs
%!assert (var ([]), NaN)
%!assert (var ([],[],1), NaN(1,0))
%!assert (var ([],[],2), NaN(0,1))
%!assert (var ([],[],3), [])
%!assert (var (ones (0,1)), NaN)
%!assert (var (ones (1,0)), NaN)
%!assert (var (ones (1,0), [], 1), NaN(1,0))
%!assert (var (ones (1,0), [], 2), NaN)
%!assert (var (ones (1,0), [], 3), NaN(1,0))
%!assert (var (ones (0,1)), NaN)
%!assert (var (ones (0,1), [], 1), NaN)
%!assert (var (ones (0,1), [], 2), NaN(0,1))
%!assert (var (ones (0,1), [], 3), NaN(0,1))
%!assert (var (ones (1,3,0,2)), NaN(1,1,0,2))
%!assert (var (ones (1,3,0,2), [], 1), NaN(1,3,0,2))
%!assert (var (ones (1,3,0,2), [], 2), NaN(1,1,0,2))
%!assert (var (ones (1,3,0,2), [], 3), NaN(1,3,1,2))
%!assert (var (ones (1,3,0,2), [], 4), NaN(1,3,0))

##Test second output
%!test <*62395>
%! [~, m] = var (13);
%! assert (m, 13);
%! [~, m] = var (single(13));
%! assert (m, single(13));
%! [~, m] = var ([1, 2, 3; 3 2 1], []);
%! assert (m, [2 2 2]);
%! [~, m] = var ([1, 2, 3; 3 2 1], [], 1);
%! assert (m, [2 2 2]);
%! [~, m] = var ([1, 2, 3; 3 2 1], [], 2);
%! assert (m, [2 2]');
%! [~, m] = var ([1, 2, 3; 3 2 1], [], 3);
%! assert (m, [1 2 3; 3 2 1]);

## 2nd output, weighted inputs, vector dims
%!test <*62395>
%! [~, m] = var(5,99);
%! assert (m, 5);
%! [~, m] = var ([1:7], [1:7]);
%! assert (m, 5);
%! [~, m] = var ([eye(3)], [1:3]);
%! assert (m, [1/6, 1/3, 0.5], eps);
%! [~, m] = var (ones (2,2,2), [1:2], 3);
%! assert (m, ones (2,2));
%! [~, m] = var ([1 2; 3 4], 0, 'all');
%! assert (m, 2.5, eps);
%! [~, m] = var (reshape ([1:8], 2, 2, 2), 0, [1 3]);
%! assert (m, [3.5, 5.5], eps);

## 2nd output, empty inputs
%!test <*62395>
%! [~, m] = var ([]);
%! assert (m, NaN);
%! [~, m] = var ([],[],1);
%! assert (m, NaN(1,0));
%! [~, m] = var ([],[],2);
%! assert (m, NaN(0,1));
%! [~, m] = var ([],[],3);
%! assert (m, []);
%! [~, m] = var (ones (1,3,0,2));
%! assert (m, NaN(1,1,0,2));

## Test input validation
%!error <Invalid call> var ()
%!error <X must be a numeric> var (['A'; 'B'])
%!error <W must be 0> var ([1 2 3], 2)
%!error <W must be .* a vector of positive integers> var ([1 2], [-1 0])
%!error <W must be .* a vector of positive integers> var ([1 2], eye (2))
%!error <W must be either 0 or 1> var (ones (2, 2), [1 2], [1 2])
%!error <W must be either 0 or 1> var ([1 2], [1 2], 'all')
%!error <the length of W must be> var ([1 2], [1 2 3])
%!error <the length of W must be> var (1, [1 2])
%!error <the length of W must be> var ([1 2], [1 2], 1)
%!error <DIM must be a positive integer> var (1, [], ones (2,2))
%!error <DIM must be a positive integer> var (1, [], 1.5)
%!error <DIM must be a positive integer> var (1, [], 0)