view scripts/general/accumarray.m @ 30875:5d3faba0342e

doc: Ensure documentation lists output argument when it exists for all m-files. For new users of Octave it is best to show explicit calling forms in the documentation and to show a return argument when it exists. * bp-table.cc, shift.m, accumarray.m, accumdim.m, bincoeff.m, bitcmp.m, bitget.m, bitset.m, blkdiag.m, celldisp.m, cplxpair.m, dblquad.m, flip.m, fliplr.m, flipud.m, idivide.m, int2str.m, interpft.m, logspace.m, num2str.m, polyarea.m, postpad.m, prepad.m, randi.m, repmat.m, rng.m, rot90.m, rotdim.m, structfun.m, triplequad.m, uibuttongroup.m, uicontrol.m, uipanel.m, uipushtool.m, uitoggletool.m, uitoolbar.m, waitforbuttonpress.m, help.m, __additional_help_message__.m, hsv.m, im2double.m, im2frame.m, javachk.m, usejava.m, argnames.m, char.m, formula.m, inline.m, __vectorize__.m, findstr.m, flipdim.m, strmatch.m, vectorize.m, commutation_matrix.m, cond.m, cross.m, duplication_matrix.m, expm.m, orth.m, rank.m, rref.m, trace.m, vech.m, cast.m, compare_versions.m, delete.m, dir.m, fileattrib.m, grabcode.m, gunzip.m, inputname.m, license.m, list_primes.m, ls.m, mexext.m, movefile.m, namelengthmax.m, nargoutchk.m, nthargout.m, substruct.m, swapbytes.m, ver.m, verLessThan.m, what.m, fminunc.m, fsolve.m, fzero.m, optimget.m, __fdjac__.m, matlabroot.m, savepath.m, campos.m, camroll.m, camtarget.m, camup.m, camva.m, camzoom.m, clabel.m, diffuse.m, legend.m, orient.m, rticks.m, specular.m, thetaticks.m, xlim.m, xtickangle.m, xticklabels.m, xticks.m, ylim.m, ytickangle.m, yticklabels.m, yticks.m, zlim.m, ztickangle.m, zticklabels.m, zticks.m, ellipsoid.m, isocolors.m, isonormals.m, stairs.m, surfnorm.m, __actual_axis_position__.m, __pltopt__.m, close.m, graphics_toolkit.m, pan.m, print.m, printd.m, __ghostscript__.m, __gnuplot_print__.m, __opengl_print__.m, rotate3d.m, subplot.m, zoom.m, compan.m, conv.m, poly.m, polyaffine.m, polyder.m, polyint.m, polyout.m, polyreduce.m, polyvalm.m, roots.m, prefdir.m, prefsfile.m, profexplore.m, profexport.m, profshow.m, powerset.m, unique.m, arch_rnd.m, arma_rnd.m, autoreg_matrix.m, bartlett.m, blackman.m, detrend.m, durbinlevinson.m, fftconv.m, fftfilt.m, fftshift.m, fractdiff.m, hamming.m, hanning.m, hurst.m, ifftshift.m, rectangle_lw.m, rectangle_sw.m, triangle_lw.m, sinc.m, sinetone.m, sinewave.m, spectral_adf.m, spectral_xdf.m, spencer.m, ilu.m, __sprand__.m, sprand.m, sprandn.m, sprandsym.m, treelayout.m, beta.m, betainc.m, betaincinv.m, betaln.m, cosint.m, expint.m, factorial.m, gammainc.m, gammaincinv.m, lcm.m, nthroot.m, perms.m, reallog.m, realpow.m, realsqrt.m, sinint.m, hadamard.m, hankel.m, hilb.m, invhilb.m, magic.m, pascal.m, rosser.m, toeplitz.m, vander.m, wilkinson.m, center.m, corr.m, cov.m, discrete_cdf.m, discrete_inv.m, discrete_pdf.m, discrete_rnd.m, empirical_cdf.m, empirical_inv.m, empirical_pdf.m, empirical_rnd.m, kendall.m, kurtosis.m, mad.m, mean.m, meansq.m, median.m, mode.m, moment.m, range.m, ranks.m, run_count.m, skewness.m, spearman.m, statistics.m, std.m, base2dec.m, bin2dec.m, blanks.m, cstrcat.m, deblank.m, dec2base.m, dec2bin.m, dec2hex.m, hex2dec.m, index.m, regexptranslate.m, rindex.m, strcat.m, strjust.m, strtrim.m, strtrunc.m, substr.m, untabify.m, __have_feature__.m, __prog_output_assert__.m, __run_test_suite__.m, example.m, fail.m, asctime.m, calendar.m, ctime.m, date.m, etime.m: Add return arguments to @deftypefn macros where they were missing. Rename variables in functions (particularly generic "retval") to match documentation. Rename some return variables for (hopefully) better clarity (e.g., 'ax' to 'hax' to indicate it is a graphics handle to an axes object).
author Rik <rik@octave.org>
date Wed, 30 Mar 2022 20:40:27 -0700
parents 796f54d4ddbf
children e1788b1a315f
line wrap: on
line source

########################################################################
##
## Copyright (C) 2007-2022 The Octave Project Developers
##
## See the file COPYRIGHT.md in the top-level directory of this
## distribution or <https://octave.org/copyright/>.
##
## This file is part of Octave.
##
## Octave is free software: you can redistribute it and/or modify it
## under the terms of the GNU General Public License as published by
## the Free Software Foundation, either version 3 of the License, or
## (at your option) any later version.
##
## Octave is distributed in the hope that it will be useful, but
## WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
## GNU General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with Octave; see the file COPYING.  If not, see
## <https://www.gnu.org/licenses/>.
##
########################################################################

## -*- texinfo -*-
## @deftypefn  {} {@var{A} =} accumarray (@var{subs}, @var{vals})
## @deftypefnx {} {@var{A} =} accumarray (@var{subs}, @var{vals}, @var{sz})
## @deftypefnx {} {@var{A} =} accumarray (@var{subs}, @var{vals}, @var{sz}, @var{func})
## @deftypefnx {} {@var{A} =} accumarray (@var{subs}, @var{vals}, @var{sz}, @var{func}, @var{fillval})
## @deftypefnx {} {@var{A} =} accumarray (@var{subs}, @var{vals}, @var{sz}, @var{func}, @var{fillval}, @var{issparse})
##
## Create an array by accumulating the elements of a vector into the
## positions defined by their subscripts.
##
## The subscripts are defined by the rows of the matrix @var{subs} and the
## values by @var{vals}.  Each row of @var{subs} corresponds to one of the
## values in @var{vals}.  If @var{vals} is a scalar, it will be used for each
## of the row of @var{subs}.  If @var{subs} is a cell array of vectors, all
## vectors must be of the same length, and the subscripts in the @var{k}th
## vector must correspond to the @var{k}th dimension of the result.
##
## The size of the matrix will be determined by the subscripts
## themselves.  However, if @var{sz} is defined it determines the matrix
## size.  The length of @var{sz} must correspond to the number of columns
## in @var{subs}.  An exception is if @var{subs} has only one column, in
## which case @var{sz} may be the dimensions of a vector and the
## subscripts of @var{subs} are taken as the indices into it.
##
## The default action of @code{accumarray} is to sum the elements with
## the same subscripts.  This behavior can be modified by defining the
## @var{func} function.  This should be a function or function handle
## that accepts a column vector and returns a scalar.  The result of the
## function should not depend on the order of the subscripts.
##
## The elements of the returned array that have no subscripts associated
## with them are set to zero.  Defining @var{fillval} to some other value
## allows these values to be defined.  This behavior changes, however,
## for certain values of @var{func}.  If @var{func} is @code{@@min}
## (respectively, @code{@@max}) then the result will be filled with the
## minimum (respectively, maximum) integer if @var{vals} is of integral
## type, logical false (respectively, logical true) if @var{vals} is of
## logical type, zero if @var{fillval} is zero and all values are
## non-positive (respectively, non-negative), and NaN otherwise.
##
## By default @code{accumarray} returns a full matrix.  If
## @var{issparse} is logically true, then a sparse matrix is returned
## instead.
##
## The following @code{accumarray} example constructs a frequency table
## that in the first column counts how many occurrences each number in
## the second column has, taken from the vector @var{x}.  Note the usage
## of @code{unique}  for assigning to all repeated elements of @var{x}
## the same index (@pxref{XREFunique,,@code{unique}}).
##
## @example
## @group
## @var{x} = [91, 92, 90, 92, 90, 89, 91, 89, 90, 100, 100, 100];
## [@var{u}, ~, @var{j}] = unique (@var{x});
## [accumarray(@var{j}', 1), @var{u}']
##   @result{}  2    89
##       3    90
##       2    91
##       2    92
##       3   100
## @end group
## @end example
##
## Another example, where the result is a multi-dimensional 3-D array and
## the default value (zero) appears in the output:
##
## @example
## @group
## accumarray ([1, 1, 1;
##              2, 1, 2;
##              2, 3, 2;
##              2, 1, 2;
##              2, 3, 2], 101:105)
## @result{} ans(:,:,1) = [101, 0, 0; 0, 0, 0]
## @result{} ans(:,:,2) = [0, 0, 0; 206, 0, 208]
## @end group
## @end example
##
## The sparse option can be used as an alternative to the @code{sparse}
## constructor (@pxref{XREFsparse,,@code{sparse}}).  Thus
##
## @example
## sparse (@var{i}, @var{j}, @var{sv})
## @end example
##
## @noindent
## can be written with @code{accumarray} as
##
## @example
## accumarray ([@var{i}, @var{j}], @var{sv}', [], [], 0, true)
## @end example
##
## @noindent
## For repeated indices, @code{sparse} adds the corresponding value.  To
## take the minimum instead, use @code{min} as an accumulator function:
##
## @example
## accumarray ([@var{i}, @var{j}], @var{sv}', [], @@min, 0, true)
## @end example
##
## The complexity of accumarray in general for the non-sparse case is
## generally O(M+N), where N is the number of subscripts and M is the
## maximum subscript (linearized in multi-dimensional case).  If
## @var{func} is one of @code{@@sum} (default), @code{@@max},
## @code{@@min} or @code{@@(x) @{x@}}, an optimized code path is used.
## Note that for general reduction function the interpreter overhead can
## play a major part and it may be more efficient to do multiple
## accumarray calls and compute the results in a vectorized manner.
##
## @seealso{accumdim, unique, sparse}
## @end deftypefn

function A = accumarray (subs, vals, sz = [], func = [], fillval = [], issparse = [])

  if (nargin < 2)
    print_usage ();
  endif

  lenvals = length (vals);

  if (iscell (subs))
    subs = cellfun (@vec, subs, "uniformoutput", false);
    ndims = numel (subs);
    if (ndims == 1)
      subs = subs{1};
    endif

    lensubs = cellfun (@length, subs);

    if (any (lensubs != lensubs(1)) || (lenvals > 1 && lenvals != lensubs(1)))
      error ("accumarray: dimension mismatch");
    endif

  else
    ndims = columns (subs);
    if (lenvals > 1 && lenvals != rows (subs))
      error ("accumarray: dimension mismatch");
    endif
  endif

  if (isempty (func))
    func = @sum;
  elseif (! is_function_handle (func))
    error ("accumarray: FUNC must be a function handle");
  endif

  if (isempty (fillval))
    fillval = 0;
  endif

  if (isempty (issparse))
    issparse = false;
  endif

  if (issparse)

    ## Sparse case.
    ## Avoid linearizing the subscripts, because it could overflow.

    if (fillval != 0)
      error ("accumarray: FILLVAL must be zero in the sparse case");
    endif

    ## Ensure subscripts are a two-column matrix.
    if (iscell (subs))
      subs = [subs{:}];
    endif

    ## Validate dimensions.
    if (ndims == 1)
      subs(:,2) = 1;
    elseif (ndims != 2)
      error ("accumarray: in the sparse case, needs 1 or 2 subscripts");
    endif

    if (isnumeric (vals) || islogical (vals))
      vals = double (vals);
    else
      error ("accumarray: in the sparse case, values must be numeric or logical");
    endif

    if (func != @sum)

      ## Reduce values.  This is not needed if we're about to sum them,
      ## because "sparse" can do that.

      ## Sort indices.
      [subs, idx] = sortrows (subs);
      n = rows (subs);
      ## Identify runs.
      jdx = find (any (diff (subs, 1, 1), 2));
      jdx = [jdx; n];

      vals = cellfun (func, mat2cell (vals(:)(idx), diff ([0; jdx])));
      subs = subs(jdx, :);
      mode = "unique";
    else
      mode = "sum";
    endif

    ## Form the sparse matrix.
    if (isempty (sz))
      A = sparse (subs(:,1), subs(:,2), vals, mode);
    elseif (length (sz) == 2)

      ## Row vector case
      if (sz(1) == 1)
        [i, j] = deal (subs(:,2), subs(:,1));
      else
        [i, j] = deal (subs(:,1), subs(:,2));
      endif
      A = sparse (i, j, vals, sz(1), sz(2), mode);
    else
      error ("accumarray: dimensions mismatch");
    endif

  else

    ## Linearize subscripts.
    if (ndims > 1)
      if (isempty (sz))
        if (iscell (subs))
          sz = cellfun ("max", subs);
        else
          sz = max (subs, [], 1);
        endif
      elseif (ndims != length (sz))
        error ("accumarray: dimensions mismatch");
      endif

      ## Convert multidimensional subscripts.
      if (isnumeric (subs))
        subs = num2cell (subs, 1);
      endif
      subs = sub2ind (sz, subs{:}); # creates index cache
    elseif (! isempty (sz) && length (sz) < 2)
      error ("accumarray: needs at least 2 dimensions");
    elseif (! isindex (subs)) # creates index cache
      error ("accumarray: indices must be positive integers");
    endif


    ## Some built-in reductions handled efficiently.

    if (func == @sum)
      ## Fast summation.
      if (isempty (sz))
        A = __accumarray_sum__ (subs, vals);
      else
        A = __accumarray_sum__ (subs, vals, prod (sz));
        ## set proper shape.
        A = reshape (A, sz);
      endif

      ## we fill in nonzero fill value.
      if (fillval != 0)
        mask = true (size (A));
        mask(subs) = false;
        A(mask) = fillval;
      endif
    elseif (func == @max)
      ## Fast maximization.

      if (isinteger (vals))
        zero = intmin (vals);
      elseif (islogical (vals))
        zero = false;
      elseif (fillval == 0 && all (vals(:) >= 0))
        ## This is a common case - fillval is zero, all numbers
        ## nonegative.
        zero = 0;
      else
        zero = NaN; # Neutral value.
      endif

      if (isempty (sz))
        A = __accumarray_max__ (subs, vals, zero);
      else
        A = __accumarray_max__ (subs, vals, zero, prod (sz));
        A = reshape (A, sz);
      endif

      if (fillval != zero && ! (isnan (fillval) || isnan (zero)))
        mask = true (size (A));
        mask(subs) = false;
        A(mask) = fillval;
      endif
    elseif (func == @min)
      ## Fast minimization.

      if (isinteger (vals))
        zero = intmax (vals);
      elseif (islogical (vals))
        zero = true;
      elseif (fillval == 0 && all (vals(:) <= 0))
        ## This is a common case - fillval is zero, all numbers
        ## non-positive.
        zero = 0;
      else
        zero = NaN; # Neutral value.
      endif

      if (isempty (sz))
        A = __accumarray_min__ (subs, vals, zero);
      else
        A = __accumarray_min__ (subs, vals, zero, prod (sz));
        A = reshape (A, sz);
      endif

      if (fillval != zero && ! (isnan (fillval) || isnan (zero)))
        mask = true (size (A));
        mask(subs) = false;
        A(mask) = fillval;
      endif
    else

      ## The general case.  Reduce values.
      n = rows (subs);
      if (numel (vals) == 1)
        vals = vals(ones (1, n), 1);
      else
        vals = vals(:);
      endif

      ## Sort indices.
      [subs, idx] = sort (subs);
      ## Identify runs.
      jdx = find (subs(1:n-1) != subs(2:n));
      if (n != 0) # bug #47287
        jdx = [jdx; n];
      endif
      vals = mat2cell (vals(idx), diff ([0; jdx]));
      ## Optimize the case when function is @(x) {x}, i.e., we just want
      ## to collect the values to cells.
      persistent simple_cell_str = func2str (@(x) {x});
      if (! strcmp (func2str (func), simple_cell_str))
        vals = cellfun (func, vals);
      endif

      subs = subs(jdx);

      if (isempty (sz))
        sz = max (subs);
        ## If subs is empty, sz will be too, and length will be 0, hence "<= 1"
        if (length (sz) <= 1)
          sz(2) = 1;
        endif
      endif

      ## Construct matrix of fillvals.
      if (iscell (vals))
        A = cell (sz);
      elseif (fillval == 0)
        A = zeros (sz, class (vals));
      else
        A = repmat (fillval, sz);
      endif

      ## Set the reduced values.
      A(subs) = vals;
    endif
  endif

endfunction


%!assert (accumarray ([1; 2; 4; 2; 4], 101:105), [101; 206; 0; 208])
%!assert (accumarray ([1 1 1; 2 1 2; 2 3 2; 2 1 2; 2 3 2], 101:105),
%!                    cat (3, [101 0 0; 0 0 0], [0 0 0; 206 0 208]))

%!assert (accumarray ([1 1 1; 2 1 2; 2 3 2; 2 1 2; 2 3 2], 101:105, [], @(x) sin (sum (x))),
%!        sin (cat (3, [101,0,0;0,0,0],[0,0,0;206,0,208])))

%!assert (accumarray ({[1 3 3 2 3 1 2 2 3 3 1 2], [3 4 2 1 4 3 4 2 2 4 3 4], [1 1 2 2 1 1 2 1 1 1 2 2]}, 101:112),
%!        cat (3, [0 0 207 0; 0 108 0 0; 0 109 0 317], [0 0 111 0; 104 0 0 219; 0 103 0 0]))

%!assert (accumarray ([1 1; 2 1; 2 3; 2 1; 2 3], 101:105, [2 4], @max, NaN),
%!        [101 NaN NaN NaN; 104 NaN 105 NaN])

%!assert (accumarray ([1 1; 2 1; 2 3; 2 1; 2 3], 101:105, [], @prod),
%!        [101 0 0; 10608 0 10815])
%!assert (accumarray ([1 1; 2 1; 2 3; 2 1; 2 3], 101:105, [2 4], @prod, 0, true),
%!        sparse ([1 2 2], [1 1 3], [101 10608 10815], 2, 4))
%!assert (accumarray ([1 1; 2 1; 2 3; 2 1; 2 3], 1, [2 4]), [1 0 0 0; 2 0 2 0])
%!assert (accumarray ([1 1; 2 1; 2 3; 2 1; 2 3], 101:105, [2 4], @(x) length (x) > 1),
%!        [false false false false; true false true false])

%!assert (accumarray ([1; 2], [3; 4], [2, 1], @min, [], 0), [3; 4])
%!assert (accumarray ([1; 2], [3; 4], [2, 1], @min, [], 1), sparse ([3; 4]))
%!assert (accumarray ([1; 2], [3; 4], [1, 2], @min, [], 0), [3, 4])
%!assert (accumarray ([1; 2], [3; 4], [1, 2], @min, [], 1), sparse ([3, 4]))

%!test
%! A = accumarray ([1 1; 2 1; 2 3; 2 1; 2 3], 101:105, [2,4], @(x) {x});
%! assert (A{2},[102; 104]);

%!test
%! subs = ceil (rand (2000, 3)*10);
%! vals = rand (2000, 1);
%! assert (accumarray (subs, vals, [], @max),
%!         accumarray (subs, vals, [], @(x) max (x)));

%!test
%! subs = ceil (rand (2000, 1)*100);
%! vals = rand (2000, 1);
%! assert (accumarray (subs, vals, [100, 1], @min, NaN),
%!         accumarray (subs, vals, [100, 1], @(x) min (x), NaN));

%!test
%! subs = ceil (rand (2000, 2)*30);
%! subsc = num2cell (subs, 1);
%! vals = rand (2000, 1);
%! assert (accumarray (subsc, vals, [], [], 0, true),
%!         accumarray (subs, vals, [], [], 0, true));

%!test
%! subs = ceil (rand (2000, 3)*10);
%! subsc = num2cell (subs, 1);
%! vals = rand (2000, 1);
%! assert (accumarray (subsc, vals, [], @max),
%!         accumarray (subs, vals, [], @max));

%!error accumarray (1:5)
%!error accumarray ([1,2,3],1:2)

## Handle empty arrays
%!test <*47287>
%! ## min, max, and sum are special cases within accumarray so test them.
%! funcs = {@(x) length (x) > 1, @min, @max, @sum};
%! for idx = 1:numel (funcs)
%!   assert (accumarray (zeros (0, 1), [], [0 1] , funcs{idx}), zeros (0, 1));
%!   assert (accumarray (zeros (0, 1), [], [1 0] , funcs{idx}), zeros (1, 0));
%!   assert (accumarray (zeros (0, 1), [], [] , funcs{idx}), zeros (0, 1));
%! endfor

## Matlab returns an array of doubles even though FUNC returns cells.  In
## Octave, we do not have that bug, at least for this case.
%!assert (accumarray (zeros (0, 1), [], [0 1] , @(x) {x}), cell (0, 1))

%!error <FUNC must be a function handle>
%! accumarray ([1; 2; 3], [1; 2; 3], [3 1], '@(x) {x}')