view scripts/optimization/fminunc.m @ 30875:5d3faba0342e

doc: Ensure documentation lists output argument when it exists for all m-files. For new users of Octave it is best to show explicit calling forms in the documentation and to show a return argument when it exists. * bp-table.cc, shift.m, accumarray.m, accumdim.m, bincoeff.m, bitcmp.m, bitget.m, bitset.m, blkdiag.m, celldisp.m, cplxpair.m, dblquad.m, flip.m, fliplr.m, flipud.m, idivide.m, int2str.m, interpft.m, logspace.m, num2str.m, polyarea.m, postpad.m, prepad.m, randi.m, repmat.m, rng.m, rot90.m, rotdim.m, structfun.m, triplequad.m, uibuttongroup.m, uicontrol.m, uipanel.m, uipushtool.m, uitoggletool.m, uitoolbar.m, waitforbuttonpress.m, help.m, __additional_help_message__.m, hsv.m, im2double.m, im2frame.m, javachk.m, usejava.m, argnames.m, char.m, formula.m, inline.m, __vectorize__.m, findstr.m, flipdim.m, strmatch.m, vectorize.m, commutation_matrix.m, cond.m, cross.m, duplication_matrix.m, expm.m, orth.m, rank.m, rref.m, trace.m, vech.m, cast.m, compare_versions.m, delete.m, dir.m, fileattrib.m, grabcode.m, gunzip.m, inputname.m, license.m, list_primes.m, ls.m, mexext.m, movefile.m, namelengthmax.m, nargoutchk.m, nthargout.m, substruct.m, swapbytes.m, ver.m, verLessThan.m, what.m, fminunc.m, fsolve.m, fzero.m, optimget.m, __fdjac__.m, matlabroot.m, savepath.m, campos.m, camroll.m, camtarget.m, camup.m, camva.m, camzoom.m, clabel.m, diffuse.m, legend.m, orient.m, rticks.m, specular.m, thetaticks.m, xlim.m, xtickangle.m, xticklabels.m, xticks.m, ylim.m, ytickangle.m, yticklabels.m, yticks.m, zlim.m, ztickangle.m, zticklabels.m, zticks.m, ellipsoid.m, isocolors.m, isonormals.m, stairs.m, surfnorm.m, __actual_axis_position__.m, __pltopt__.m, close.m, graphics_toolkit.m, pan.m, print.m, printd.m, __ghostscript__.m, __gnuplot_print__.m, __opengl_print__.m, rotate3d.m, subplot.m, zoom.m, compan.m, conv.m, poly.m, polyaffine.m, polyder.m, polyint.m, polyout.m, polyreduce.m, polyvalm.m, roots.m, prefdir.m, prefsfile.m, profexplore.m, profexport.m, profshow.m, powerset.m, unique.m, arch_rnd.m, arma_rnd.m, autoreg_matrix.m, bartlett.m, blackman.m, detrend.m, durbinlevinson.m, fftconv.m, fftfilt.m, fftshift.m, fractdiff.m, hamming.m, hanning.m, hurst.m, ifftshift.m, rectangle_lw.m, rectangle_sw.m, triangle_lw.m, sinc.m, sinetone.m, sinewave.m, spectral_adf.m, spectral_xdf.m, spencer.m, ilu.m, __sprand__.m, sprand.m, sprandn.m, sprandsym.m, treelayout.m, beta.m, betainc.m, betaincinv.m, betaln.m, cosint.m, expint.m, factorial.m, gammainc.m, gammaincinv.m, lcm.m, nthroot.m, perms.m, reallog.m, realpow.m, realsqrt.m, sinint.m, hadamard.m, hankel.m, hilb.m, invhilb.m, magic.m, pascal.m, rosser.m, toeplitz.m, vander.m, wilkinson.m, center.m, corr.m, cov.m, discrete_cdf.m, discrete_inv.m, discrete_pdf.m, discrete_rnd.m, empirical_cdf.m, empirical_inv.m, empirical_pdf.m, empirical_rnd.m, kendall.m, kurtosis.m, mad.m, mean.m, meansq.m, median.m, mode.m, moment.m, range.m, ranks.m, run_count.m, skewness.m, spearman.m, statistics.m, std.m, base2dec.m, bin2dec.m, blanks.m, cstrcat.m, deblank.m, dec2base.m, dec2bin.m, dec2hex.m, hex2dec.m, index.m, regexptranslate.m, rindex.m, strcat.m, strjust.m, strtrim.m, strtrunc.m, substr.m, untabify.m, __have_feature__.m, __prog_output_assert__.m, __run_test_suite__.m, example.m, fail.m, asctime.m, calendar.m, ctime.m, date.m, etime.m: Add return arguments to @deftypefn macros where they were missing. Rename variables in functions (particularly generic "retval") to match documentation. Rename some return variables for (hopefully) better clarity (e.g., 'ax' to 'hax' to indicate it is a graphics handle to an axes object).
author Rik <rik@octave.org>
date Wed, 30 Mar 2022 20:40:27 -0700
parents 796f54d4ddbf
children e1788b1a315f
line wrap: on
line source

########################################################################
##
## Copyright (C) 2008-2022 The Octave Project Developers
##
## See the file COPYRIGHT.md in the top-level directory of this
## distribution or <https://octave.org/copyright/>.
##
## This file is part of Octave.
##
## Octave is free software: you can redistribute it and/or modify it
## under the terms of the GNU General Public License as published by
## the Free Software Foundation, either version 3 of the License, or
## (at your option) any later version.
##
## Octave is distributed in the hope that it will be useful, but
## WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
## GNU General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with Octave; see the file COPYING.  If not, see
## <https://www.gnu.org/licenses/>.
##
########################################################################

## -*- texinfo -*-
## @deftypefn  {} {@var{x} =} fminunc (@var{fcn}, @var{x0})
## @deftypefnx {} {@var{x} =} fminunc (@var{fcn}, @var{x0}, @var{options})
## @deftypefnx {} {[@var{x}, @var{fval}] =} fminunc (@var{fcn}, @dots{})
## @deftypefnx {} {[@var{x}, @var{fval}, @var{info}] =} fminunc (@var{fcn}, @dots{})
## @deftypefnx {} {[@var{x}, @var{fval}, @var{info}, @var{output}] =} fminunc (@var{fcn}, @dots{})
## @deftypefnx {} {[@var{x}, @var{fval}, @var{info}, @var{output}, @var{grad}] =} fminunc (@var{fcn}, @dots{})
## @deftypefnx {} {[@var{x}, @var{fval}, @var{info}, @var{output}, @var{grad}, @var{hess}] =} fminunc (@var{fcn}, @dots{})
## Solve an unconstrained optimization problem defined by the function
## @var{fcn}.
##
## @code{fminunc} attempts to determine a vector @var{x} such that
## @code{@var{fcn} (@var{x})} is a local minimum.
##
## @var{fun} is a function handle, inline function, or string containing the
## name of the function to evaluate.  @var{fcn} should accept a vector (array)
## defining the unknown variables, and return the objective function value,
## optionally with gradient.
##
## @var{x0} determines a starting guess.  The shape of @var{x0} is preserved in
## all calls to @var{fcn}, but otherwise is treated as a column vector.
##
## @var{options} is a structure specifying additional parameters which
## control the algorithm.  Currently, @code{fminunc} recognizes these options:
## @qcode{"AutoScaling"}, @qcode{"FinDiffType"}, @qcode{"FunValCheck"},
## @qcode{"GradObj"}, @qcode{"MaxFunEvals"}, @qcode{"MaxIter"},
## @qcode{"OutputFcn"}, @qcode{"TolFun"}, @qcode{"TolX"}, @qcode{"TypicalX"}.
##
## If @qcode{"AutoScaling"} is @qcode{"on"}, the variables will be
## automatically scaled according to the column norms of the (estimated)
## Jacobian.  As a result, @qcode{"TolFun"} becomes scaling-independent.  By
## default, this option is @qcode{"off"} because it may sometimes deliver
## unexpected (though mathematically correct) results.
##
## If @qcode{"GradObj"} is @qcode{"on"}, it specifies that @var{fcn}---when
## called with two output arguments---also returns the Jacobian matrix of
## partial first derivatives at the requested point.
##
## @qcode{"MaxFunEvals"} proscribes the maximum number of function evaluations
## before optimization is halted.  The default value is
## @code{100 * number_of_variables}, i.e., @code{100 * length (@var{x0})}.
## The value must be a positive integer.
##
## @qcode{"MaxIter"} proscribes the maximum number of algorithm iterations
## before optimization is halted.  The default value is 400.
## The value must be a positive integer.
##
## @qcode{"TolX"} specifies the termination tolerance for the unknown variables
## @var{x}, while @qcode{"TolFun"} is a tolerance for the objective function
## value @var{fval}.  The default is @code{1e-6} for both options.
##
## For a description of the other options,
## @pxref{XREFoptimset,,@code{optimset}}.
##
## On return, @var{x} is the location of the minimum and @var{fval} contains
## the value of the objective function at @var{x}.
##
## @var{info} may be one of the following values:
##
## @table @asis
## @item 1
## Converged to a solution point.  Relative gradient error is less than
## specified by @code{TolFun}.
##
## @item 2
## Last relative step size was less than @code{TolX}.
##
## @item 3
## Last relative change in function value was less than @code{TolFun}.
##
## @item 0
## Iteration limit exceeded---either maximum number of algorithm iterations
## @code{MaxIter} or maximum number of function evaluations @code{MaxFunEvals}.
##
## @item -1
## Algorithm terminated by @code{OutputFcn}.
##
## @item -3
## The trust region radius became excessively small.
## @end table
##
## Optionally, @code{fminunc} can return a structure with convergence
## statistics (@var{output}), the output gradient (@var{grad}) at the
## solution @var{x}, and approximate Hessian (@var{hess}) at the solution
## @var{x}.
##
## Application Notes: If the objective function is a single nonlinear equation
## of one variable then using @code{fminbnd} is usually a better choice.
##
## The algorithm used by @code{fminunc} is a gradient search which depends
## on the objective function being differentiable.  If the function has
## discontinuities it may be better to use a derivative-free algorithm such as
## @code{fminsearch}.
## @seealso{fminbnd, fminsearch, optimset}
## @end deftypefn

## PKG_ADD: ## Discard result to avoid polluting workspace with ans at startup.
## PKG_ADD: [~] = __all_opts__ ("fminunc");

function [x, fval, info, output, grad, hess] = fminunc (fcn, x0, options = struct ())

  ## Get default options if requested.
  if (nargin == 1 && strcmp (fcn, "defaults"))
    x = struct ("AutoScaling", "off", "FunValCheck", "off",
                "FinDiffType", "forward", "GradObj", "off",
                "MaxFunEvals", [], "MaxIter", 400, "OutputFcn", [],
                "TolFun", 1e-6, "TolX", 1e-6, "TypicalX", []);
    return;
  endif

  if (nargin < 2 || ! isnumeric (x0))
    print_usage ();
  endif

  if (ischar (fcn))
    fcn = str2func (fcn);
  endif

  xsz = size (x0);
  n = numel (x0);

  has_grad = strcmpi (optimget (options, "GradObj", "off"), "on");
  cdif = strcmpi (optimget (options, "FinDiffType", "forward"), "central");
  maxiter = optimget (options, "MaxIter", 400);
  maxfev = optimget (options, "MaxFunEvals", 100*n);
  outfcn = optimget (options, "OutputFcn");

  ## Get scaling matrix using the TypicalX option.  If set to "auto", the
  ## scaling matrix is estimated using the Jacobian.
  typicalx = optimget (options, "TypicalX");
  if (isempty (typicalx))
    typicalx = ones (n, 1);
  endif
  autoscale = strcmpi (optimget (options, "AutoScaling", "off"), "on");
  if (! autoscale)
    dg = 1 ./ typicalx;
  endif

  funvalchk = strcmpi (optimget (options, "FunValCheck", "off"), "on");

  if (funvalchk)
    ## Replace fcn with a guarded version.
    fcn = @(x) guarded_eval (fcn, x);
  endif

  ## These defaults are rather stringent.  I think that normally, user
  ## prefers accuracy to performance.

  tolx = optimget (options, "TolX", 1e-7);
  tolf = optimget (options, "TolFun", 1e-7);

  factor = 0.1;
  ## FIXME: TypicalX corresponds to user scaling (???)
  autodg = true;

  niter = 1;
  nfev = 0;

  x = x0(:);
  info = 0;

  ## Initial evaluation.
  fval = fcn (reshape (x, xsz));
  n = length (x);

  if (! isempty (outfcn))
    optimvalues.iter = niter;
    optimvalues.funccount = nfev;
    optimvalues.fval = fval;
    optimvalues.searchdirection = zeros (n, 1);
    state = "init";
    stop = outfcn (x, optimvalues, state);
    if (stop)
      info = -1;
      return;
    endif
  endif

  if (isa (x0, "single") || isa (fval, "single"))
    macheps = eps ("single");
  else
    macheps = eps ("double");
  endif

  nsuciter = 0;
  lastratio = 0;

  grad = [];

  ## Outer loop.
  while (niter < maxiter && nfev < maxfev && ! info)

    grad0 = grad;

    ## Calculate function value and gradient (possibly via FD).
    if (has_grad)
      [fval, grad] = fcn (reshape (x, xsz));
      grad = grad(:);
      nfev += 1;
    else
      grad = __fdjac__ (fcn, reshape (x, xsz), fval, typicalx, cdif)(:);
      nfev += (1 + cdif) * length (x);
    endif

    if (niter == 1)
      ## Initialize by identity matrix.
      hesr = eye (n);
    else
      ## Use the damped BFGS formula.
      y = grad - grad0;
      sBs = sumsq (w);
      Bs = hesr' * w;
      sy = y' * s;
      theta = 0.8 / max (1 - sy / sBs, 0.8);
      r = theta * y + (1-theta) * Bs;
      hesr = cholupdate (hesr, r / sqrt (s' * r), "+");
      [hesr, info] = cholupdate (hesr, Bs / sqrt (sBs), "-");
      if (info)
        hesr = eye (n);
      endif
    endif

    if (autoscale)
      ## Second derivatives approximate the Hessian.
      d2f = norm (hesr, "columns").';
      if (niter == 1)
        dg = d2f;
      else
        ## FIXME: maybe fixed lower and upper bounds?
        dg = max (0.1*dg, d2f);
      endif
    endif

    if (niter == 1)
      xn = norm (dg .* x);
      ## FIXME: something better?
      delta = factor * max (xn, 1);
    endif

    ## FIXME: why tolf*n*xn?  If abs (e) ~ abs(x) * eps is a vector
    ## of perturbations of x, then norm (hesr*e) <= eps*xn, i.e., by
    ## tolf ~ eps we demand as much accuracy as we can expect.
    if (norm (grad) <= tolf*n*xn)
      info = 1;
      break;
    endif

    suc = false;
    decfac = 0.5;

    ## Inner loop.
    while (! suc && niter <= maxiter && nfev < maxfev && ! info)

      s = - __doglegm__ (hesr, grad, dg, delta);

      sn = norm (dg .* s);
      if (niter == 1)
        delta = min (delta, sn);
      endif

      fval1 = fcn (reshape (x + s, xsz))(:);
      nfev += 1;

      if (fval1 < fval)
        ## Scaled actual reduction.
        actred = (fval - fval1) / (abs (fval1) + abs (fval));
      else
        actred = -1;
      endif

      w = hesr * s;
      ## Scaled predicted reduction, and ratio.
      t = 1/2 * sumsq (w) + grad'*s;
      if (t < 0)
        prered = -t/(abs (fval) + abs (fval + t));
        ratio = actred / prered;
      else
        prered = 0;
        ratio = 0;
      endif

      ## Update delta.
      if (ratio < min (max (0.1, 0.8*lastratio), 0.9))
        delta *= decfac;
        decfac ^= 1.4142;
        if (delta <= 10*macheps*xn)
          ## Trust region became uselessly small.
          info = -3;
          break;
        endif
      else
        lastratio = ratio;
        decfac = 0.5;
        if (abs (1-ratio) <= 0.1)
          delta = 1.4142*sn;
        elseif (ratio >= 0.5)
          delta = max (delta, 1.4142*sn);
        endif
      endif

      if (ratio >= 1e-4)
        ## Successful iteration.
        x += s;
        xn = norm (dg .* x);
        fval = fval1;
        nsuciter += 1;
        suc = true;
      endif

      niter += 1;

      ## FIXME: should outputfcn be called only after a successful iteration?
      if (! isempty (outfcn))
        optimvalues.iter = niter;
        optimvalues.funccount = nfev;
        optimvalues.fval = fval;
        optimvalues.searchdirection = s;
        state = "iter";
        stop = outfcn (x, optimvalues, state);
        if (stop)
          info = -1;
          break;
        endif
      endif

      ## Tests for termination conditions.  A mysterious place, anything
      ## can happen if you change something here...

      ## The rule of thumb (which I'm not sure M*b is quite following)
      ## is that for a tolerance that depends on scaling, only 0 makes
      ## sense as a default value.  But 0 usually means uselessly long
      ## iterations, so we need scaling-independent tolerances wherever
      ## possible.

      ## The following tests done only after successful step.
      if (ratio >= 1e-4)
        ## This one is classic.  Note that we use scaled variables again,
        ## but compare to scaled step, so nothing bad.
        if (sn <= tolx*xn)
          info = 2;
          ## Again a classic one.
        elseif (actred < tolf)
          info = 3;
        endif
      endif

    endwhile
  endwhile

  ## When info != 1, recalculate the gradient and Hessian using the final x.
  if (nargout > 4 && (info == -1 || info == 2 || info == 3))
    grad0 = grad;
    if (has_grad)
      [fval, grad] = fcn (reshape (x, xsz));
      grad = grad(:);
    else
      grad = __fdjac__ (fcn, reshape (x, xsz), fval, typicalx, cdif)(:);
    endif

    if (nargout > 5)
      ## Use the damped BFGS formula.
      y = grad - grad0;
      sBs = sumsq (w);
      Bs = hesr' * w;
      sy = y' * s;
      theta = 0.8 / max (1 - sy / sBs, 0.8);
      r = theta * y + (1-theta) * Bs;
      hesr = cholupdate (hesr, r / sqrt (s' * r), "+");
      hesr = cholupdate (hesr, Bs / sqrt (sBs), "-");
    endif
    ## Return the gradient in the same shape as x
    grad = reshape (grad, xsz);
  endif

  ## Restore original shapes.
  x = reshape (x, xsz);

  if (nargout > 3)
    output.iterations = niter;
    output.successful = nsuciter;
    output.funcCount = nfev;
  endif

  if (nargout > 5)
    hess = hesr'*hesr;
  endif

endfunction

## A helper function that evaluates a function and checks for bad results.
function [fx, gx] = guarded_eval (fun, x)

  if (nargout > 1)
    [fx, gx] = fun (x);
  else
    fx = fun (x);
    gx = [];
  endif

  if (! (isreal (fx) && isreal (gx)))
    error ("Octave:fminunc:notreal", "fminunc: non-real value encountered");
  elseif (any (isnan (fx(:))))
    error ("Octave:fminunc:isnan", "fminunc: NaN value encountered");
  elseif (any (isinf (fx(:))))
    error ("Octave:fminunc:isinf", "fminunc: Inf value encountered");
  endif

endfunction


%!function f = __rosenb__ (x)
%!  n = length (x);
%!  f = sumsq (1 - x(1:n-1)) + 100 * sumsq (x(2:n) - x(1:n-1).^2);
%!endfunction
%!
%!test
%! [x, fval, info, out] = fminunc (@__rosenb__, [5, -5]);
%! tol = 2e-5;
%! assert (info > 0);
%! assert (x, ones (1, 2), tol);
%! assert (fval, 0, tol);
%!test
%! [x, fval, info, out] = fminunc (@__rosenb__, zeros (1, 4));
%! tol = 2e-5;
%! assert (info > 0);
%! assert (x, ones (1, 4), tol);
%! assert (fval, 0, tol);

## Test FunValCheck works correctly
%!assert (fminunc (@(x) x^2, 1, optimset ("FunValCheck", "on")), 0, 1e-6)
%!error <non-real value> fminunc (@(x) x + i, 1, optimset ("FunValCheck", "on"))
%!error <NaN value> fminunc (@(x) x + NaN, 1, optimset ("FunValCheck", "on"))
%!error <Inf value> fminunc (@(x) x + Inf, 1, optimset ("FunValCheck", "on"))


## Solve the double dogleg trust-region minimization problem:
## Minimize 1/2*norm(r*x)^2  subject to the constraint norm(d.*x) <= delta,
## x being a convex combination of the gauss-newton and scaled gradient.

## FIXME: error checks
## FIXME: handle singularity, or leave it up to mldivide?

function x = __doglegm__ (r, g, d, delta)

  ## Get Gauss-Newton direction.
  b = r' \ g;
  x = r \ b;
  xn = norm (d .* x);
  if (xn > delta)
    ## GN is too big, get scaled gradient.
    s = g ./ d;
    sn = norm (s);
    if (sn > 0)
      ## Normalize and rescale.
      s = (s / sn) ./ d;
      ## Get the line minimizer in s direction.
      tn = norm (r*s);
      snm = (sn / tn) / tn;
      if (snm < delta)
        ## Get the dogleg path minimizer.
        bn = norm (b);
        dxn = delta/xn; snmd = snm/delta;
        t = (bn/sn) * (bn/xn) * snmd;
        t -= dxn * snmd^2 - sqrt ((t-dxn)^2 + (1-dxn^2)*(1-snmd^2));
        alpha = dxn*(1-snmd^2) / t;
      else
        alpha = 0;
      endif
    else
      alpha = delta / xn;
      snm = 0;
    endif
    ## Form the appropriate convex combination.
    x = alpha * x + ((1-alpha) * min (snm, delta)) * s;
  endif

endfunction