view scripts/optimization/fsolve.m @ 30875:5d3faba0342e

doc: Ensure documentation lists output argument when it exists for all m-files. For new users of Octave it is best to show explicit calling forms in the documentation and to show a return argument when it exists. * bp-table.cc, shift.m, accumarray.m, accumdim.m, bincoeff.m, bitcmp.m, bitget.m, bitset.m, blkdiag.m, celldisp.m, cplxpair.m, dblquad.m, flip.m, fliplr.m, flipud.m, idivide.m, int2str.m, interpft.m, logspace.m, num2str.m, polyarea.m, postpad.m, prepad.m, randi.m, repmat.m, rng.m, rot90.m, rotdim.m, structfun.m, triplequad.m, uibuttongroup.m, uicontrol.m, uipanel.m, uipushtool.m, uitoggletool.m, uitoolbar.m, waitforbuttonpress.m, help.m, __additional_help_message__.m, hsv.m, im2double.m, im2frame.m, javachk.m, usejava.m, argnames.m, char.m, formula.m, inline.m, __vectorize__.m, findstr.m, flipdim.m, strmatch.m, vectorize.m, commutation_matrix.m, cond.m, cross.m, duplication_matrix.m, expm.m, orth.m, rank.m, rref.m, trace.m, vech.m, cast.m, compare_versions.m, delete.m, dir.m, fileattrib.m, grabcode.m, gunzip.m, inputname.m, license.m, list_primes.m, ls.m, mexext.m, movefile.m, namelengthmax.m, nargoutchk.m, nthargout.m, substruct.m, swapbytes.m, ver.m, verLessThan.m, what.m, fminunc.m, fsolve.m, fzero.m, optimget.m, __fdjac__.m, matlabroot.m, savepath.m, campos.m, camroll.m, camtarget.m, camup.m, camva.m, camzoom.m, clabel.m, diffuse.m, legend.m, orient.m, rticks.m, specular.m, thetaticks.m, xlim.m, xtickangle.m, xticklabels.m, xticks.m, ylim.m, ytickangle.m, yticklabels.m, yticks.m, zlim.m, ztickangle.m, zticklabels.m, zticks.m, ellipsoid.m, isocolors.m, isonormals.m, stairs.m, surfnorm.m, __actual_axis_position__.m, __pltopt__.m, close.m, graphics_toolkit.m, pan.m, print.m, printd.m, __ghostscript__.m, __gnuplot_print__.m, __opengl_print__.m, rotate3d.m, subplot.m, zoom.m, compan.m, conv.m, poly.m, polyaffine.m, polyder.m, polyint.m, polyout.m, polyreduce.m, polyvalm.m, roots.m, prefdir.m, prefsfile.m, profexplore.m, profexport.m, profshow.m, powerset.m, unique.m, arch_rnd.m, arma_rnd.m, autoreg_matrix.m, bartlett.m, blackman.m, detrend.m, durbinlevinson.m, fftconv.m, fftfilt.m, fftshift.m, fractdiff.m, hamming.m, hanning.m, hurst.m, ifftshift.m, rectangle_lw.m, rectangle_sw.m, triangle_lw.m, sinc.m, sinetone.m, sinewave.m, spectral_adf.m, spectral_xdf.m, spencer.m, ilu.m, __sprand__.m, sprand.m, sprandn.m, sprandsym.m, treelayout.m, beta.m, betainc.m, betaincinv.m, betaln.m, cosint.m, expint.m, factorial.m, gammainc.m, gammaincinv.m, lcm.m, nthroot.m, perms.m, reallog.m, realpow.m, realsqrt.m, sinint.m, hadamard.m, hankel.m, hilb.m, invhilb.m, magic.m, pascal.m, rosser.m, toeplitz.m, vander.m, wilkinson.m, center.m, corr.m, cov.m, discrete_cdf.m, discrete_inv.m, discrete_pdf.m, discrete_rnd.m, empirical_cdf.m, empirical_inv.m, empirical_pdf.m, empirical_rnd.m, kendall.m, kurtosis.m, mad.m, mean.m, meansq.m, median.m, mode.m, moment.m, range.m, ranks.m, run_count.m, skewness.m, spearman.m, statistics.m, std.m, base2dec.m, bin2dec.m, blanks.m, cstrcat.m, deblank.m, dec2base.m, dec2bin.m, dec2hex.m, hex2dec.m, index.m, regexptranslate.m, rindex.m, strcat.m, strjust.m, strtrim.m, strtrunc.m, substr.m, untabify.m, __have_feature__.m, __prog_output_assert__.m, __run_test_suite__.m, example.m, fail.m, asctime.m, calendar.m, ctime.m, date.m, etime.m: Add return arguments to @deftypefn macros where they were missing. Rename variables in functions (particularly generic "retval") to match documentation. Rename some return variables for (hopefully) better clarity (e.g., 'ax' to 'hax' to indicate it is a graphics handle to an axes object).
author Rik <rik@octave.org>
date Wed, 30 Mar 2022 20:40:27 -0700
parents 796f54d4ddbf
children e1788b1a315f
line wrap: on
line source

########################################################################
##
## Copyright (C) 2008-2022 The Octave Project Developers
##
## See the file COPYRIGHT.md in the top-level directory of this
## distribution or <https://octave.org/copyright/>.
##
## This file is part of Octave.
##
## Octave is free software: you can redistribute it and/or modify it
## under the terms of the GNU General Public License as published by
## the Free Software Foundation, either version 3 of the License, or
## (at your option) any later version.
##
## Octave is distributed in the hope that it will be useful, but
## WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
## GNU General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with Octave; see the file COPYING.  If not, see
## <https://www.gnu.org/licenses/>.
##
########################################################################

## -*- texinfo -*-
## @deftypefn  {} {@var{x} =} fsolve (@var{fcn}, @var{x0})
## @deftypefnx {} {@var{x} =} fsolve (@var{fcn}, @var{x0}, @var{options})
## @deftypefnx {} {[@var{x}, @var{fval}] =} fsolve (@dots{})
## @deftypefnx {} {[@var{x}, @var{fval}, @var{info}] =} fsolve (@dots{})
## @deftypefnx {} {[@var{x}, @var{fval}, @var{info}, @var{output}] =} fsolve (@dots{})
## @deftypefnx {} {[@var{x}, @var{fval}, @var{info}, @var{output}, @var{fjac}] =} fsolve (@dots{})
## Solve a system of nonlinear equations defined by the function @var{fcn}.
##
## @var{fun} is a function handle, inline function, or string containing the
## name of the function to evaluate.  @var{fcn} should accept a vector (array)
## defining the unknown variables, and return a vector of left-hand sides of
## the equations.  Right-hand sides are defined to be zeros.  In other words,
## this function attempts to determine a vector @var{x} such that
## @code{@var{fcn} (@var{x})} gives (approximately) all zeros.
##
## @var{x0} is an initial guess for the solution.  The shape of @var{x0} is
## preserved in all calls to @var{fcn}, but otherwise is treated as a column
## vector.
##
## @var{options} is a structure specifying additional parameters which
## control the algorithm.  Currently, @code{fsolve} recognizes these options:
## @qcode{"AutoScaling"}, @qcode{"ComplexEqn"}, @qcode{"FinDiffType"},
## @qcode{"FunValCheck"}, @qcode{"Jacobian"}, @qcode{"MaxFunEvals"},
## @qcode{"MaxIter"}, @qcode{"OutputFcn"}, @qcode{"TolFun"}, @qcode{"TolX"},
## @qcode{"TypicalX"}, and @qcode{"Updating"}.
##
## If @qcode{"AutoScaling"} is @qcode{"on"}, the variables will be
## automatically scaled according to the column norms of the (estimated)
## Jacobian.  As a result, @qcode{"TolFun"} becomes scaling-independent.  By
## default, this option is @qcode{"off"} because it may sometimes deliver
## unexpected (though mathematically correct) results.
##
## If @qcode{"ComplexEqn"} is @qcode{"on"}, @code{fsolve} will attempt to solve
## complex equations in complex variables, assuming that the equations possess
## a complex derivative (i.e., are holomorphic).  If this is not what you want,
## you should unpack the real and imaginary parts of the system to get a real
## system.
##
## If @qcode{"Jacobian"} is @qcode{"on"}, it specifies that @var{fcn}---when
## called with 2 output arguments---also returns the Jacobian matrix of
## right-hand sides at the requested point.
##
## @qcode{"MaxFunEvals"} proscribes the maximum number of function evaluations
## before optimization is halted.  The default value is
## @code{100 * number_of_variables}, i.e., @code{100 * length (@var{x0})}.
## The value must be a positive integer.
##
## If @qcode{"Updating"} is @qcode{"on"}, the function will attempt to use
## @nospell{Broyden} updates to update the Jacobian, in order to reduce the
## number of Jacobian calculations.  If your user function always calculates
## the Jacobian (regardless of number of output arguments) then this option
## provides no advantage and should be disabled.
##
## @qcode{"TolX"} specifies the termination tolerance in the unknown variables,
## while @qcode{"TolFun"} is a tolerance for equations.  Default is @code{1e-6}
## for both @qcode{"TolX"} and @qcode{"TolFun"}.
##
## For a description of the other options,
## @pxref{XREFoptimset,,@code{optimset}}.  To initialize an options structure
## with default values for @code{fsolve} use
## @code{options = optimset ("fsolve")}.
##
## The first output @var{x} is the solution while the second output @var{fval}
## contains the value of the function @var{fcn} evaluated at @var{x} (ideally
## a vector of all zeros).
##
## The third output @var{info} reports whether the algorithm succeeded and may
## take one of the following values:
##
## @table @asis
## @item 1
## Converged to a solution point.  Relative residual error is less than
## specified by @code{TolFun}.
##
## @item 2
## Last relative step size was less than @code{TolX}.
##
## @item 3
## Last relative decrease in residual was less than @code{TolFun}.
##
## @item 0
## Iteration limit (either @code{MaxIter} or @code{MaxFunEvals}) exceeded.
##
## @item -1
## Stopped by @code{OutputFcn}.
##
## @item -2
## The Jacobian became excessively small and the search stalled.
##
## @item -3
## The trust region radius became excessively small.
## @end table
##
## @var{output} is a structure containing runtime information about the
## @code{fsolve} algorithm.  Fields in the structure are:
##
## @table @code
## @item iterations
##  Number of iterations through loop.
##
## @item successful
##  Number of successful iterations.
##
## @item @nospell{funcCount}
##  Number of function evaluations.
##
## @end table
##
## The final output @var{fjac} contains the value of the Jacobian evaluated
## at @var{x}.
##
## Note: If you only have a single nonlinear equation of one variable, using
## @code{fzero} is usually a much better idea.
##
## Note about user-supplied Jacobians:
## As an inherent property of the algorithm, a Jacobian is always requested for
## a solution vector whose residual vector is already known, and it is the last
## accepted successful step.  Often this will be one of the last two calls, but
## not always.  If the savings by reusing intermediate results from residual
## calculation in Jacobian calculation are significant, the best strategy is to
## employ @code{OutputFcn}: After a vector is evaluated for residuals, if
## @code{OutputFcn} is called with that vector, then the intermediate results
## should be saved for future Jacobian evaluation, and should be kept until a
## Jacobian evaluation is requested or until @code{OutputFcn} is called with a
## different vector, in which case they should be dropped in favor of this most
## recent vector.  A short example how this can be achieved follows:
##
## @example
## function [fval, fjac] = user_func (x, optimvalues, state)
## persistent sav = [], sav0 = [];
## if (nargin == 1)
##   ## evaluation call
##   if (nargout == 1)
##     sav0.x = x; # mark saved vector
##     ## calculate fval, save results to sav0.
##   elseif (nargout == 2)
##     ## calculate fjac using sav.
##   endif
## else
##   ## outputfcn call.
##   if (all (x == sav0.x))
##     sav = sav0;
##   endif
##   ## maybe output iteration status, etc.
## endif
## endfunction
##
## ## @dots{}
##
## fsolve (@@user_func, x0, optimset ("OutputFcn", @@user_func, @dots{}))
## @end example
## @seealso{fzero, optimset}
## @end deftypefn

## PKG_ADD: ## Discard result to avoid polluting workspace with ans at startup.
## PKG_ADD: [~] = __all_opts__ ("fsolve");

function [x, fval, info, output, fjac] = fsolve (fcn, x0, options = struct ())

  ## Get default options if requested.
  if (nargin == 1 && ischar (fcn) && strcmp (fcn, "defaults"))
    x = struct ("AutoScaling", "off", "ComplexEqn", "off",
                "FunValCheck", "off", "FinDiffType", "forward",
                "Jacobian", "off",  "MaxFunEvals", [], "MaxIter", 400,
                "OutputFcn", [], "Updating", "off", "TolFun", 1e-6,
                "TolX", 1e-6, "TypicalX", []);
    return;
  endif

  if (nargin < 2 || ! isnumeric (x0))
    print_usage ();
  endif

  if (ischar (fcn))
    fcn = str2func (fcn);
  elseif (iscell (fcn))
    fcn = @(x) make_fcn_jac (x, fcn{1}, fcn{2});
  endif

  xsiz = size (x0);
  n = numel (x0);

  has_jac = strcmpi (optimget (options, "Jacobian", "off"), "on");
  cdif = strcmpi (optimget (options, "FinDiffType", "forward"), "central");
  maxiter = optimget (options, "MaxIter", 400);
  maxfev = optimget (options, "MaxFunEvals", 100*n);
  outfcn = optimget (options, "OutputFcn");
  updating = strcmpi (optimget (options, "Updating", "off"), "on");
  complexeqn = strcmpi (optimget (options, "ComplexEqn", "off"), "on");

  ## Get scaling matrix using the TypicalX option.  If set to "auto", the
  ## scaling matrix is estimated using the Jacobian.
  typicalx = optimget (options, "TypicalX", ones (n, 1));

  autoscale = strcmpi (optimget (options, "AutoScaling", "off"), "on");
  if (! autoscale)
    dg = 1 ./ typicalx;
  endif

  funvalchk = strcmpi (optimget (options, "FunValCheck", "off"), "on");

  if (funvalchk)
    ## Replace fcn with a guarded version.
    fcn = @(x) guarded_eval (fcn, x, complexeqn);
  endif

  ## These defaults are rather stringent.
  ## Normally user prefers accuracy to performance.

  tolx = optimget (options, "TolX", 1e-6);
  tolf = optimget (options, "TolFun", 1e-6);

  factor = 1;

  niter = 1;
  nfev = 1;

  x = x0(:);
  info = 0;

  ## Initial evaluation.
  ## Handle arbitrary shapes of x and f and remember them.
  fval = fcn (reshape (x, xsiz));
  fsiz = size (fval);
  fval = fval(:);
  fn = norm (fval);
  m = length (fval);
  n = length (x);

  if (! isempty (outfcn))
    optimvalues.iter = niter;
    optimvalues.funccount = nfev;
    optimvalues.fval = fn;
    optimvalues.searchdirection = zeros (n, 1);
    state = "init";
    stop = outfcn (x, optimvalues, state);
    if (stop)
      info = -1;
      output.iterations = niter;
      output.successful = 0;
      output.funcCount = nfev;
      fjac = NaN;
      return;
    endif
  endif

  if (isa (x0, "single") || isa (fval, "single"))
    macheps = eps ("single");
  else
    macheps = eps ("double");
  endif

  nsuciter = 0;

  ## Outer loop.
  while (niter < maxiter && nfev < maxfev && ! info)

    ## Calculate function value and Jacobian (possibly via FD).
    if (has_jac)
      [fval, fjac] = fcn (reshape (x, xsiz));
      if (! all (size (fjac) == [m, n]))
        error ("fsolve: Jacobian size should be (%d,%d), not (%d,%d)",
               m, n, rows (fjac), columns (fjac));
      endif
      ## If the Jacobian is sparse, disable Broyden updating.
      if (issparse (fjac))
        updating = false;
      endif
      fval = fval(:);
      nfev += 1;
    else
      fjac = __fdjac__ (fcn, reshape (x, xsiz), fval, typicalx, cdif);
      nfev += (1 + cdif) * length (x);
    endif

    ## For square and overdetermined systems, we update a QR factorization of
    ## the Jacobian to avoid solving a full system in each step.  In this case,
    ## we pass a triangular matrix to __dogleg__.
    useqr = updating && m >= n && n > 10;

    if (useqr)
      ## FIXME: Currently, pivoting is mostly useless because the \ operator
      ## cannot exploit the resulting props of the triangular factor.
      ## Unpivoted QR is significantly faster so it doesn't seem right to pivot
      ## just to get invariance.  Original MINPACK didn't pivot either,
      ## at least when qr updating was used.
      [q, r] = qr (fjac, 0);
    endif

    if (autoscale)
      ## Get column norms, use them as scaling factors.
      jcn = norm (fjac, "columns").';
      if (niter == 1)
        dg = jcn;
        dg(dg == 0) = 1;
      else
        ## Rescale adaptively.
        ## FIXME: the original minpack used the following rescaling strategy:
        ##   dg = max (dg, jcn);
        ## but it seems not good if we start with a bad guess yielding Jacobian
        ## columns with large norms that later decrease, because the
        ## corresponding variable will still be overscaled.  Instead, we only
        ## give the old scaling a small momentum, but do not honor it.

        dg = max (0.1*dg, jcn);
      endif
    endif

    if (niter == 1)
      xn = norm (dg .* x);
      ## FIXME: something better?
      delta = factor * max (xn, 1);
    endif

    ## It also seems that in the case of fast (and inhomogeneously) changing
    ## Jacobian, the Broyden updates are of little use, so maybe we could
    ## skip them if a big disproportional change is expected.  The question is,
    ## of course, how to define the above terms :)

    lastratio = 0;
    nfail = 0;
    nsuc = 0;
    decfac = 0.5;

    ## Inner loop.
    while (niter <= maxiter && nfev < maxfev && ! info)

      ## Get trust-region model (dogleg) minimizer.
      if (useqr)
        if (norm (r, 1) < macheps * rows (r))
          info = -2;
          break;
        endif
        qtf = q'*fval;
        s = - __dogleg__ (r, qtf, dg, delta);
        w = qtf + r * s;
      else
        if (norm (fjac, 1) < macheps * rows (fjac))
          info = -2;
          break;
        endif
        s = - __dogleg__ (fjac, fval, dg, delta);
        w = fval + fjac * s;
      endif

      sn = norm (dg .* s);
      if (niter == 1)
        delta = min (delta, sn);
      endif

      fval1 = fcn (reshape (x + s, xsiz)) (:);
      fn1 = norm (fval1);
      nfev += 1;

      if (fn1 < fn)
        ## Scaled actual reduction.
        actred = 1 - (fn1/fn)^2;
      else
        actred = -1;
      endif

      ## Scaled predicted reduction, and ratio.
      t = norm (w);
      if (t < fn)
        prered = 1 - (t/fn)^2;
        ratio = actred / prered;
      else
        prered = 0;
        ratio = 0;
      endif

      ## Update delta.
      if (ratio < min (max (0.1, 0.8*lastratio), 0.9))
        nsuc = 0;
        nfail += 1;
        delta *= decfac;
        decfac ^= 1.4142;
        if (fn <= tolf*n*xn)
          info = 1;
        elseif (delta <= 1e1*macheps*xn)
          ## Trust region became uselessly small.
          info = -3;
          break;
        endif
      else
        lastratio = ratio;
        decfac = 0.5;
        nfail = 0;
        nsuc += 1;
        if (abs (1-ratio) <= 0.1)
          delta = 1.4142*sn;
        elseif (ratio >= 0.5 || nsuc > 1)
          delta = max (delta, 1.4142*sn);
        endif
      endif

      if (ratio >= 1e-4)
        ## Successful iteration.
        x += s;
        xn = norm (dg .* x);
        fval = fval1;
        fn = fn1;
        nsuciter += 1;
      endif

      niter += 1;

      ## FIXME: should outputfcn be only called after a successful iteration?
      if (! isempty (outfcn))
        optimvalues.iter = niter;
        optimvalues.funccount = nfev;
        optimvalues.fval = fn;
        optimvalues.searchdirection = s;
        state = "iter";
        stop = outfcn (x, optimvalues, state);
        if (stop)
          info = -1;
          output.iterations = niter;
          output.successful = nsuciter;
          output.funcCount = nfev;
          break;
        endif
      endif

      ## Tests for termination conditions.  A mysterious place, anything
      ## can happen if you change something here...

      ## The rule of thumb (which I'm not sure M*b is quite following)
      ## is that for a tolerance that depends on scaling, only 0 makes
      ## sense as a default value.  But 0 usually means uselessly long
      ## iterations, so we need scaling-independent tolerances wherever
      ## possible.

      ## FIXME: Why tolf*n*xn? If abs (e) ~ abs(x) * eps is a vector
      ## of perturbations of x, then norm (fjac*e) <= eps*n*xn, i.e., by
      ## tolf ~ eps we demand as much accuracy as we can expect.
      if (fn <= tolf*n*xn)
        info = 1;
        ## The following tests done only after successful step.
      elseif (ratio >= 1e-4)
        ## This one is classic.  Note that we use scaled variables again,
        ## but compare to scaled step, so nothing bad.
        if (sn <= tolx*xn)
          info = 2;
          ## Again a classic one.  It seems weird to use the same tolf
          ## for two different tests, but that's what M*b manual appears
          ## to say.
        elseif (actred < tolf)
          info = 3;
        endif
      endif

      ## Criterion for recalculating Jacobian.
      if (! updating || nfail == 2 || nsuciter < 2)
        break;
      endif

      ## Compute the scaled Broyden update.
      if (useqr)
        u = (fval1 - q*w) / sn;
        v = dg .* ((dg .* s) / sn);

        ## Update the QR factorization.
        [q, r] = qrupdate (q, r, u, v);
      else
        u = (fval1 - w);
        v = dg .* ((dg .* s) / sn);

        ## update the Jacobian
        fjac += u * v';
      endif
    endwhile
  endwhile

  ## Restore original shapes.
  x = reshape (x, xsiz);
  fval = reshape (fval, fsiz);

  output.iterations = niter;
  output.successful = nsuciter;
  output.funcCount = nfev;

endfunction

## A helper function that evaluates a function and checks for bad results.
function [fx, jx] = guarded_eval (fun, x, complexeqn)

  if (nargout > 1)
    [fx, jx] = fun (x);
  else
    fx = fun (x);
    jx = [];
  endif

  if (! complexeqn && ! (isreal (fx) && isreal (jx)))
    error ("Octave:fsolve:notreal", "fsolve: non-real value encountered");
  elseif (complexeqn && ! (isnumeric (fx) && isnumeric (jx)))
    error ("Octave:fsolve:notnum", "fsolve: non-numeric value encountered");
  elseif (any (isnan (fx(:))))
    error ("Octave:fsolve:isnan", "fsolve: NaN value encountered");
  elseif (any (isinf (fx(:))))
    error ("Octave:fsolve:isinf", "fsolve: Inf value encountered");
  endif

endfunction

function [fx, jx] = make_fcn_jac (x, fcn, fjac)

  fx = fcn (x);
  if (nargout == 2)
    jx = fjac (x);
  endif

endfunction

## Solve the double dogleg trust-region least-squares problem:
## Minimize norm (r*x-b) subject to the constraint norm (d.*x) <= delta,
## x being a convex combination of the gauss-newton and scaled gradient.

## FIXME: error checks
## FIXME: handle singularity, or leave it up to mldivide?

function x = __dogleg__ (r, b, d, delta)

  ## Get Gauss-Newton direction.
  x = r \ b;
  xn = norm (d .* x);
  if (xn > delta)
    ## GN is too big, get scaled gradient.
    s = (r' * b) ./ d;
    sn = norm (s);
    if (sn > 0)
      ## Normalize and rescale.
      s = (s / sn) ./ d;
      ## Get the line minimizer in s direction.
      tn = norm (r*s);
      snm = (sn / tn) / tn;
      if (snm < delta)
        ## Get the dogleg path minimizer.
        bn = norm (b);
        dxn = delta/xn; snmd = snm/delta;
        t = (bn/sn) * (bn/xn) * snmd;
        t -= dxn * snmd^2 - sqrt ((t-dxn)^2 + (1-dxn^2)*(1-snmd^2));
        alpha = dxn*(1-snmd^2) / t;
      else
        alpha = 0;
      endif
    else
      alpha = delta / xn;
      snm = 0;
    endif
    ## Form the appropriate convex combination.
    x = alpha * x + ((1-alpha) * min (snm, delta)) * s;
  endif

endfunction


%!function retval = __f (p)
%!  x = p(1);
%!  y = p(2);
%!  z = p(3);
%!  retval = zeros (3, 1);
%!  retval(1) = sin (x) + y^2 + log (z) - 7;
%!  retval(2) = 3*x + 2^y -z^3 + 1;
%!  retval(3) = x + y + z - 5;
%!endfunction
%!test
%! x_opt = [ 0.599054;
%!           2.395931;
%!           2.005014 ];
%! tol = 1.0e-5;
%! [x, fval, info] = fsolve (@__f, [ 0.5; 2.0; 2.5 ]);
%! assert (info > 0);
%! assert (norm (x - x_opt, Inf) < tol);
%! assert (norm (fval) < tol);

%!function retval = __f (p)
%!  x = p(1);
%!  y = p(2);
%!  z = p(3);
%!  w = p(4);
%!  retval = zeros (4, 1);
%!  retval(1) = 3*x + 4*y + exp (z + w) - 1.007;
%!  retval(2) = 6*x - 4*y + exp (3*z + w) - 11;
%!  retval(3) = x^4 - 4*y^2 + 6*z - 8*w - 20;
%!  retval(4) = x^2 + 2*y^3 + z - w - 4;
%!endfunction
%!test
%! x_opt = [ -0.767297326653401, 0.590671081117440, ...
%!            1.47190018629642, -1.52719341133957 ];
%! tol = 1.0e-4;
%! [x, fval, info] = fsolve (@__f, [-1, 1, 2, -1]);
%! assert (info > 0);
%! assert (norm (x - x_opt, Inf) < tol);
%! assert (norm (fval) < tol);

%!function retval = __f (p)
%!  x = p(1);
%!  y = p(2);
%!  z = p(3);
%!  retval = zeros (3, 1);
%!  retval(1) = sin (x) + y^2 + log (z) - 7;
%!  retval(2) = 3*x + 2^y -z^3 + 1;
%!  retval(3) = x + y + z - 5;
%!  retval(4) = x*x + y - z*log (z) - 1.36;
%!endfunction
%!test
%! x_opt = [ 0.599054;
%!           2.395931;
%!           2.005014 ];
%! tol = 1.0e-5;
%! [x, fval, info] = fsolve (@__f, [ 0.5; 2.0; 2.5 ]);
%! assert (info > 0);
%! assert (norm (x - x_opt, Inf) < tol);
%! assert (norm (fval) < tol);

%!function retval = __f (p)
%!  x = p(1);
%!  y = p(2);
%!  z = p(3);
%!  retval = zeros (3, 1);
%!  retval(1) = sin (x) + y^2 + log (z) - 7;
%!  retval(2) = 3*x + 2^y -z^3 + 1;
%!  retval(3) = x + y + z - 5;
%!endfunction
%!test
%! x_opt = [ 0.599054;
%!           2.395931;
%!           2.005014 ];
%! tol = 1.0e-5;
%! opt = optimset ("Updating", "qrp");
%! [x, fval, info] = fsolve (@__f, [ 0.5; 2.0; 2.5 ], opt);
%! assert (info > 0);
%! assert (norm (x - x_opt, Inf) < tol);
%! assert (norm (fval) < tol);

%!test
%! b0 = 3;
%! a0 = 0.2;
%! x = 0:.5:5;
%! noise = 1e-5 * sin (100*x);
%! y = exp (-a0*x) + b0 + noise;
%! c_opt = [a0, b0];
%! tol = 1e-5;
%!
%! [c, fval, info, output] = fsolve (@(c) (exp(-c(1)*x) + c(2) - y), [0, 0]);
%! assert (info > 0);
%! assert (norm (c - c_opt, Inf) < tol);
%! assert (norm (fval) < norm (noise));

%!function y = cfun (x)
%!  y(1) = (1+i)*x(1)^2 - (1-i)*x(2) - 2;
%!  y(2) = sqrt (x(1)*x(2)) - (1-2i)*x(3) + (3-4i);
%!  y(3) = x(1) * x(2) - x(3)^2 + (3+2i);
%!endfunction

%!test
%! x_opt = [-1+i, 1-i, 2+i];
%! x = [i, 1, 1+i];
%!
%! [x, f, info] = fsolve (@cfun, x, optimset ("ComplexEqn", "on"));
%! tol = 1e-5;
%! assert (norm (f) < tol);
%! assert (norm (x - x_opt, Inf) < tol);

%!test <*53991>
%! A = @(lam) [0 1 0 0; 0 0 1 0; 0 0 0 1; 0 0 -lam^2 0];
%! C = [1 0 0 0; 0 0 1 0];
%! B = @(lam) [C*expm(A(lam)*0); C*expm(A(lam)*1)];
%! detB = @(lam) det (B(lam));
%!
%! [x, fval, info] = fsolve (detB, 0);
%! assert (x == 0);
%! assert (fval == -1);
%! assert (info == -2);

%!test <*53991>
%! [x, fval, info] = fsolve (@(x) 5*x, 0);
%! assert (x == 0);
%! assert (fval == 0);
%! assert (info == 1);