view scripts/optimization/fzero.m @ 30875:5d3faba0342e

doc: Ensure documentation lists output argument when it exists for all m-files. For new users of Octave it is best to show explicit calling forms in the documentation and to show a return argument when it exists. * bp-table.cc, shift.m, accumarray.m, accumdim.m, bincoeff.m, bitcmp.m, bitget.m, bitset.m, blkdiag.m, celldisp.m, cplxpair.m, dblquad.m, flip.m, fliplr.m, flipud.m, idivide.m, int2str.m, interpft.m, logspace.m, num2str.m, polyarea.m, postpad.m, prepad.m, randi.m, repmat.m, rng.m, rot90.m, rotdim.m, structfun.m, triplequad.m, uibuttongroup.m, uicontrol.m, uipanel.m, uipushtool.m, uitoggletool.m, uitoolbar.m, waitforbuttonpress.m, help.m, __additional_help_message__.m, hsv.m, im2double.m, im2frame.m, javachk.m, usejava.m, argnames.m, char.m, formula.m, inline.m, __vectorize__.m, findstr.m, flipdim.m, strmatch.m, vectorize.m, commutation_matrix.m, cond.m, cross.m, duplication_matrix.m, expm.m, orth.m, rank.m, rref.m, trace.m, vech.m, cast.m, compare_versions.m, delete.m, dir.m, fileattrib.m, grabcode.m, gunzip.m, inputname.m, license.m, list_primes.m, ls.m, mexext.m, movefile.m, namelengthmax.m, nargoutchk.m, nthargout.m, substruct.m, swapbytes.m, ver.m, verLessThan.m, what.m, fminunc.m, fsolve.m, fzero.m, optimget.m, __fdjac__.m, matlabroot.m, savepath.m, campos.m, camroll.m, camtarget.m, camup.m, camva.m, camzoom.m, clabel.m, diffuse.m, legend.m, orient.m, rticks.m, specular.m, thetaticks.m, xlim.m, xtickangle.m, xticklabels.m, xticks.m, ylim.m, ytickangle.m, yticklabels.m, yticks.m, zlim.m, ztickangle.m, zticklabels.m, zticks.m, ellipsoid.m, isocolors.m, isonormals.m, stairs.m, surfnorm.m, __actual_axis_position__.m, __pltopt__.m, close.m, graphics_toolkit.m, pan.m, print.m, printd.m, __ghostscript__.m, __gnuplot_print__.m, __opengl_print__.m, rotate3d.m, subplot.m, zoom.m, compan.m, conv.m, poly.m, polyaffine.m, polyder.m, polyint.m, polyout.m, polyreduce.m, polyvalm.m, roots.m, prefdir.m, prefsfile.m, profexplore.m, profexport.m, profshow.m, powerset.m, unique.m, arch_rnd.m, arma_rnd.m, autoreg_matrix.m, bartlett.m, blackman.m, detrend.m, durbinlevinson.m, fftconv.m, fftfilt.m, fftshift.m, fractdiff.m, hamming.m, hanning.m, hurst.m, ifftshift.m, rectangle_lw.m, rectangle_sw.m, triangle_lw.m, sinc.m, sinetone.m, sinewave.m, spectral_adf.m, spectral_xdf.m, spencer.m, ilu.m, __sprand__.m, sprand.m, sprandn.m, sprandsym.m, treelayout.m, beta.m, betainc.m, betaincinv.m, betaln.m, cosint.m, expint.m, factorial.m, gammainc.m, gammaincinv.m, lcm.m, nthroot.m, perms.m, reallog.m, realpow.m, realsqrt.m, sinint.m, hadamard.m, hankel.m, hilb.m, invhilb.m, magic.m, pascal.m, rosser.m, toeplitz.m, vander.m, wilkinson.m, center.m, corr.m, cov.m, discrete_cdf.m, discrete_inv.m, discrete_pdf.m, discrete_rnd.m, empirical_cdf.m, empirical_inv.m, empirical_pdf.m, empirical_rnd.m, kendall.m, kurtosis.m, mad.m, mean.m, meansq.m, median.m, mode.m, moment.m, range.m, ranks.m, run_count.m, skewness.m, spearman.m, statistics.m, std.m, base2dec.m, bin2dec.m, blanks.m, cstrcat.m, deblank.m, dec2base.m, dec2bin.m, dec2hex.m, hex2dec.m, index.m, regexptranslate.m, rindex.m, strcat.m, strjust.m, strtrim.m, strtrunc.m, substr.m, untabify.m, __have_feature__.m, __prog_output_assert__.m, __run_test_suite__.m, example.m, fail.m, asctime.m, calendar.m, ctime.m, date.m, etime.m: Add return arguments to @deftypefn macros where they were missing. Rename variables in functions (particularly generic "retval") to match documentation. Rename some return variables for (hopefully) better clarity (e.g., 'ax' to 'hax' to indicate it is a graphics handle to an axes object).
author Rik <rik@octave.org>
date Wed, 30 Mar 2022 20:40:27 -0700
parents 796f54d4ddbf
children e1788b1a315f
line wrap: on
line source

########################################################################
##
## Copyright (C) 2008-2022 The Octave Project Developers
##
## See the file COPYRIGHT.md in the top-level directory of this
## distribution or <https://octave.org/copyright/>.
##
## This file is part of Octave.
##
## Octave is free software: you can redistribute it and/or modify it
## under the terms of the GNU General Public License as published by
## the Free Software Foundation, either version 3 of the License, or
## (at your option) any later version.
##
## Octave is distributed in the hope that it will be useful, but
## WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
## GNU General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with Octave; see the file COPYING.  If not, see
## <https://www.gnu.org/licenses/>.
##
########################################################################

## -*- texinfo -*-
## @deftypefn  {} {@var{x} =} fzero (@var{fun}, @var{x0})
## @deftypefnx {} {@var{x} =} fzero (@var{fun}, @var{x0}, @var{options})
## @deftypefnx {} {[@var{x}, @var{fval}] =} fzero (@dots{})
## @deftypefnx {} {[@var{x}, @var{fval}, @var{info}] =} fzero (@dots{})
## @deftypefnx {} {[@var{x}, @var{fval}, @var{info}, @var{output}] =} fzero (@dots{})
## Find a zero of a univariate function.
##
## @var{fun} is a function handle, inline function, or string containing the
## name of the function to evaluate.
##
## @var{x0} should be a two-element vector specifying two points which
## bracket a zero.  In other words, there must be a change in sign of the
## function between @var{x0}(1) and @var{x0}(2).  More mathematically, the
## following must hold
##
## @example
## sign (@var{fun}(@var{x0}(1))) * sign (@var{fun}(@var{x0}(2))) <= 0
## @end example
##
## If @var{x0} is a single scalar then several nearby and distant values are
## probed in an attempt to obtain a valid bracketing.  If this is not
## successful, the function fails.
##
## @var{options} is a structure specifying additional options.  Currently,
## @code{fzero} recognizes these options:
## @qcode{"Display"}, @qcode{"FunValCheck"}, @qcode{"MaxFunEvals"},
## @qcode{"MaxIter"}, @qcode{"OutputFcn"}, and @qcode{"TolX"}.
##
## @qcode{"MaxFunEvals"} proscribes the maximum number of function evaluations
## before the search is halted.  The default value is @code{Inf}.
## The value must be a positive integer.
##
## @qcode{"MaxIter"} proscribes the maximum number of algorithm iterations
## before the search is halted.  The default value is @code{Inf}.
## The value must be a positive integer.
##
## @qcode{"TolX"} specifies the termination tolerance for the solution @var{x}.
## The default value is @code{eps}.
##
## For a description of the other options,
## @pxref{XREFoptimset,,@code{optimset}}.
## To initialize an options structure with default values for @code{fzero} use
## @code{options = optimset ("fzero")}.
##
## On exit, the function returns @var{x}, the approximate zero point, and
## @var{fval}, the function evaluated at @var{x}.
##
## The third output @var{info} reports whether the algorithm succeeded and
## may take one of the following values:
##
## @itemize
## @item 1
##  The algorithm converged to a solution.
##
## @item 0
##  Maximum number of iterations or function evaluations has been reached.
##
## @item -1
## The algorithm has been terminated by a user @code{OutputFcn}.
##
## @item -5
## The algorithm may have converged to a singular point.
## @end itemize
##
## @var{output} is a structure containing runtime information about the
## @code{fzero} algorithm.  Fields in the structure are:
##
## @itemize
## @item iterations
##  Number of iterations through loop.
##
## @item @nospell{funcCount}
##  Number of function evaluations.
##
## @item algorithm
##  The string @qcode{"bisection, interpolation"}.
##
## @item bracketx
##  A two-element vector with the final bracketing of the zero along the
## x-axis.
##
## @item brackety
##  A two-element vector with the final bracketing of the zero along the
## y-axis.
## @end itemize
## @seealso{optimset, fsolve}
## @end deftypefn

## This is essentially the @nospell{ACM} algorithm 748: Enclosing Zeros of
## Continuous Functions due to Alefeld, Potra and Shi, @nospell{ACM}
## Transactions on Mathematical Software, Vol. 21, No. 3, September 1995.
## Although the workflow should be the same, the structure of the algorithm has
## been transformed non-trivially; instead of the authors' approach of
## sequentially calling building blocks subprograms we implement here a
## FSM version using one interior point determination and one bracketing
## per iteration, thus reducing the number of temporary variables and
## simplifying the algorithm structure.  Further, this approach reduces
## the need for external functions and error handling.  The algorithm has
## also been slightly modified.

## PKG_ADD: ## Discard result to avoid polluting workspace with ans at startup.
## PKG_ADD: [~] = __all_opts__ ("fzero");

function [x, fval, info, output] = fzero (fun, x0, options = struct ())

  ## Get default options if requested.
  if (nargin == 1 && ischar (fun) && strcmp (fun, "defaults"))
    x = struct ("Display", "notify", "FunValCheck", "off",
                "MaxFunEvals", Inf, "MaxIter", Inf,
                "OutputFcn", [], "TolX", eps);
    return;
  endif

  if (nargin < 2)
    print_usage ();
  endif

  if (ischar (fun))
    fun = str2func (fun);
  endif

  displev = optimget (options, "Display", "notify");
  switch (displev)
    case "iter"
      displev = 1;
    case "final"
      displev = 2;
    case "notify"
      displev = 3;
    otherwise  # "none"
      displev = 0;
  endswitch

  funvalchk = strcmpi (optimget (options, "FunValCheck", "off"), "on");
  maxfev = optimget (options, "MaxFunEvals", Inf);
  maxiter = optimget (options, "MaxIter", Inf);
  outfcn = optimget (options, "OutputFcn");
  tolx = optimget (options, "TolX", eps);

  mu = 0.5;

  if (funvalchk)
    ## Replace fun with a guarded version.
    fun = @(x) guarded_eval (fun, x);
  endif

  info = 0;  # The default exit flag if number of iterations exceeded.
  niter = 0;
  nfev = 0;

  x = fval = a = fa = b = fb = NaN;

  ## Prepare...
  a = x0(1);
  fa = fun (a);
  nfev = 1;
  if (length (x0) > 1)
    b = x0(2);
    fb = fun (b);
    nfev += 1;
  else
    ## Try to find a value for b which brackets a zero-crossing
    if (displev == 1)
      printf ( ...
        "\nSearch for an interval around %g containing a sign change:\n", a);
      printf (" Func-count    a          f(a)             b          ");
      printf ("f(b)        Procedure\n");
      fmt_str = " %4d   %13.6g %13.6g %13.6g %13.6g   %s\n";
    endif

    ## For very small values, switch to absolute rather than relative search
    if (abs (a) < .001)
      aa = ifelse (a == 0, 0.1, sign (a) * 0.1);
    else
      aa = a;
    endif
    if (displev == 1)
      printf (fmt_str, nfev, a, fa, a, fa, "initial interval");
    endif
    ## Search in an ever-widening range around the initial point.
    for srch = [-.01 +.025 -.05 +.10 -.25 +.50 -1 +2.5 -5 +10 -50 +100 -500 +1000]
      b = aa + aa*srch;
      fb = fun (b);
      nfev += 1;
      if (displev == 1)
        printf (fmt_str, nfev, a, fa, b, fb, "search");
      endif
      if (sign (fa) * sign (fb) <= 0)
        break;
      endif
    endfor
  endif

  if (b < a)
    u = a;
    a = b;
    b = u;

    fu = fa;
    fa = fb;
    fb = fu;
  endif

  if (! (sign (fa) * sign (fb) <= 0))
    error ("Octave:fzero:bracket", "fzero: not a valid initial bracketing");
  endif

  if (displev == 1)
    printf ("\nSearch for a zero in the interval [%g, %g]:\n", a, b);
    disp (" Func-count    x          f(x)             Procedure");
    fmt_str = " %4d   %13.6g %13.6g        %s\n";
  endif

  slope0 = (fb - fa) / (b - a);

  if (fa == 0)
    b = a;
    fb = fa;
  elseif (fb == 0)
    a = b;
    fa = fb;
  endif

  itype = 1;

  if (abs (fa) < abs (fb))
    u = a; fu = fa;
  else
    u = b; fu = fb;
  endif
  if (displev == 1)
    printf (fmt_str, nfev, u, fu, "initial");
  endif

  if (isa (x0, "single") || isa (fa, "single"))
    macheps = eps ("single");
  else
    macheps = eps ("double");
  endif

  d = e = u;
  fd = fe = fu;
  mba = mu*(b - a);
  while (niter < maxiter && nfev < maxfev)
    switch (itype)
      case 1
        ## The initial test.
        if (b - a <= 2*(2 * abs (u) * macheps + tolx))
          x = u; fval = fu;
          info = 1;
          break;
        endif
        if (abs (fa) <= 1e3*abs (fb) && abs (fb) <= 1e3*abs (fa))
          ## Secant step.
          c = u - (a - b) / (fa - fb) * fu;
        else
          ## Bisection step.
          c = 0.5*(a + b);
        endif
        d = u; fd = fu;
        itype = 5;
      case {2, 3}
        l = length (unique ([fa, fb, fd, fe]));
        if (l == 4)
          ## Inverse cubic interpolation.
          q11 = (d - e) * fd / (fe - fd);
          q21 = (b - d) * fb / (fd - fb);
          q31 = (a - b) * fa / (fb - fa);
          d21 = (b - d) * fd / (fd - fb);
          d31 = (a - b) * fb / (fb - fa);
          q22 = (d21 - q11) * fb / (fe - fb);
          q32 = (d31 - q21) * fa / (fd - fa);
          d32 = (d31 - q21) * fd / (fd - fa);
          q33 = (d32 - q22) * fa / (fe - fa);
          c = a + q31 + q32 + q33;
        endif
        if (l < 4 || sign (c - a) * sign (c - b) > 0)
          ## Quadratic interpolation + Newton.
          a0 = fa;
          a1 = (fb - fa)/(b - a);
          a2 = ((fd - fb)/(d - b) - a1) / (d - a);
          ## Modification 1: this is simpler and does not seem to be worse.
          c = a - a0/a1;
          if (a2 != 0)
            c = a - a0/a1;
            for i = 1:itype
              pc = a0 + (a1 + a2*(c - b))*(c - a);
              pdc = a1 + a2*(2*c - a - b);
              if (pdc == 0)
                c = a - a0/a1;
                break;
              endif
              c -= pc/pdc;
            endfor
          endif
        endif
        itype += 1;
      case 4
        ## Double secant step.
        c = u - 2*(b - a)/(fb - fa)*fu;
        ## Bisect if too far.
        if (abs (c - u) > 0.5*(b - a))
          c = 0.5 * (b + a);
        endif
        itype = 5;
      case 5
        ## Bisection step.
        c = 0.5 * (b + a);
        itype = 2;
    endswitch

    ## Don't let c come too close to a or b.
    delta = 2*0.7*(2 * abs (u) * macheps + tolx);
    if ((b - a) <= 2*delta)
      c = (a + b)/2;
    else
      c = max (a + delta, min (b - delta, c));
    endif

    ## Calculate new point.
    x = c;
    fval = fc = fun (c);
    niter += 1; nfev += 1;
    if (displev == 1)
      printf (fmt_str, nfev, x, fc, "interpolation");
    endif

    ## Modification 2: skip inverse cubic interpolation if
    ## nonmonotonicity is detected.
    if (sign (fc - fa) * sign (fc - fb) >= 0)
      ## The new point broke monotonicity.
      ## Disable inverse cubic.
      fe = fc;
    else
      e = d; fe = fd;
    endif

    ## Bracketing.
    if (sign (fa) * sign (fc) < 0)
      d = b; fd = fb;
      b = c; fb = fc;
    elseif (sign (fb) * sign (fc) < 0)
      d = a; fd = fa;
      a = c; fa = fc;
    elseif (fc == 0)
      a = b = c; fa = fb = fc;
      info = 1;
      break;
    else
      ## This should never happen.
      error ("Octave:fzero:bracket", "fzero: zero point is not bracketed");
    endif

    ## If there's an output function, use it now.
    if (! isempty (outfcn))
      optv.funccount = nfev;
      optv.fval = fval;
      optv.iteration = niter;
      if (outfcn (x, optv, "iter"))
        info = -1;
        break;
      endif
    endif

    if (abs (fa) < abs (fb))
      u = a; fu = fa;
    else
      u = b; fu = fb;
    endif
    if (b - a <= 2*(2 * abs (u) * macheps + tolx))
      info = 1;
      break;
    endif

    ## Skip bisection step if successful reduction.
    if (itype == 5 && (b - a) <= mba)
      itype = 2;
    endif
    if (itype == 2)
      mba = mu * (b - a);
    endif
  endwhile

  ## Check solution for a singularity by examining slope
  if (info == 1)
    if ((b - a) != 0
        && abs ((fb - fa)/(b - a) / slope0) > max (1e6, 0.5/(macheps+tolx)))
      info = -5;
    endif
  endif

  if (displev != 0)
    switch (info)
      case 1
        if (displev != 3)
          disp ("\nAlgorithm converged.\n");
        endif
      case -1
        disp ("\nAlgorithm has been terminated by user.\n");
      case -5
        disp ("\nAlgorithm seemingly converged to a singular point.\n");
      otherwise
        disp ( ...
          "\nMaximum number of iterations or function evaluations reached.\n");
    endswitch
  endif

  output.iterations = niter;
  output.funcCount = nfev;
  output.algorithm = "bisection, interpolation";
  output.bracketx = [a, b];
  output.brackety = [fa, fb];

endfunction

## A helper function that evaluates a function and checks for bad results.
function fx = guarded_eval (fun, x)

  fx = fun (x);
  fx = fx(1);
  if (! isreal (fx))
    error ("Octave:fzero:notreal", "fzero: non-real value encountered");
  elseif (isnan (fx))
    error ("Octave:fzero:isnan", "fzero: NaN value encountered");
  endif

endfunction


%!shared opt0
%! opt0 = optimset ("tolx", 0);
%!assert (fzero (@cos, [0, 3], opt0), pi/2, 10*eps)
%!assert (fzero (@(x) x^(1/3) - 1e-8, [0,1], opt0), 1e-24, 1e-22*eps)
%!assert <*54445> (fzero (@ (x) x, 0), 0)
%!assert <*54445> (fzero (@ (x) x + 1, 0), -1)