view scripts/polynomial/pchip.m @ 30875:5d3faba0342e

doc: Ensure documentation lists output argument when it exists for all m-files. For new users of Octave it is best to show explicit calling forms in the documentation and to show a return argument when it exists. * bp-table.cc, shift.m, accumarray.m, accumdim.m, bincoeff.m, bitcmp.m, bitget.m, bitset.m, blkdiag.m, celldisp.m, cplxpair.m, dblquad.m, flip.m, fliplr.m, flipud.m, idivide.m, int2str.m, interpft.m, logspace.m, num2str.m, polyarea.m, postpad.m, prepad.m, randi.m, repmat.m, rng.m, rot90.m, rotdim.m, structfun.m, triplequad.m, uibuttongroup.m, uicontrol.m, uipanel.m, uipushtool.m, uitoggletool.m, uitoolbar.m, waitforbuttonpress.m, help.m, __additional_help_message__.m, hsv.m, im2double.m, im2frame.m, javachk.m, usejava.m, argnames.m, char.m, formula.m, inline.m, __vectorize__.m, findstr.m, flipdim.m, strmatch.m, vectorize.m, commutation_matrix.m, cond.m, cross.m, duplication_matrix.m, expm.m, orth.m, rank.m, rref.m, trace.m, vech.m, cast.m, compare_versions.m, delete.m, dir.m, fileattrib.m, grabcode.m, gunzip.m, inputname.m, license.m, list_primes.m, ls.m, mexext.m, movefile.m, namelengthmax.m, nargoutchk.m, nthargout.m, substruct.m, swapbytes.m, ver.m, verLessThan.m, what.m, fminunc.m, fsolve.m, fzero.m, optimget.m, __fdjac__.m, matlabroot.m, savepath.m, campos.m, camroll.m, camtarget.m, camup.m, camva.m, camzoom.m, clabel.m, diffuse.m, legend.m, orient.m, rticks.m, specular.m, thetaticks.m, xlim.m, xtickangle.m, xticklabels.m, xticks.m, ylim.m, ytickangle.m, yticklabels.m, yticks.m, zlim.m, ztickangle.m, zticklabels.m, zticks.m, ellipsoid.m, isocolors.m, isonormals.m, stairs.m, surfnorm.m, __actual_axis_position__.m, __pltopt__.m, close.m, graphics_toolkit.m, pan.m, print.m, printd.m, __ghostscript__.m, __gnuplot_print__.m, __opengl_print__.m, rotate3d.m, subplot.m, zoom.m, compan.m, conv.m, poly.m, polyaffine.m, polyder.m, polyint.m, polyout.m, polyreduce.m, polyvalm.m, roots.m, prefdir.m, prefsfile.m, profexplore.m, profexport.m, profshow.m, powerset.m, unique.m, arch_rnd.m, arma_rnd.m, autoreg_matrix.m, bartlett.m, blackman.m, detrend.m, durbinlevinson.m, fftconv.m, fftfilt.m, fftshift.m, fractdiff.m, hamming.m, hanning.m, hurst.m, ifftshift.m, rectangle_lw.m, rectangle_sw.m, triangle_lw.m, sinc.m, sinetone.m, sinewave.m, spectral_adf.m, spectral_xdf.m, spencer.m, ilu.m, __sprand__.m, sprand.m, sprandn.m, sprandsym.m, treelayout.m, beta.m, betainc.m, betaincinv.m, betaln.m, cosint.m, expint.m, factorial.m, gammainc.m, gammaincinv.m, lcm.m, nthroot.m, perms.m, reallog.m, realpow.m, realsqrt.m, sinint.m, hadamard.m, hankel.m, hilb.m, invhilb.m, magic.m, pascal.m, rosser.m, toeplitz.m, vander.m, wilkinson.m, center.m, corr.m, cov.m, discrete_cdf.m, discrete_inv.m, discrete_pdf.m, discrete_rnd.m, empirical_cdf.m, empirical_inv.m, empirical_pdf.m, empirical_rnd.m, kendall.m, kurtosis.m, mad.m, mean.m, meansq.m, median.m, mode.m, moment.m, range.m, ranks.m, run_count.m, skewness.m, spearman.m, statistics.m, std.m, base2dec.m, bin2dec.m, blanks.m, cstrcat.m, deblank.m, dec2base.m, dec2bin.m, dec2hex.m, hex2dec.m, index.m, regexptranslate.m, rindex.m, strcat.m, strjust.m, strtrim.m, strtrunc.m, substr.m, untabify.m, __have_feature__.m, __prog_output_assert__.m, __run_test_suite__.m, example.m, fail.m, asctime.m, calendar.m, ctime.m, date.m, etime.m: Add return arguments to @deftypefn macros where they were missing. Rename variables in functions (particularly generic "retval") to match documentation. Rename some return variables for (hopefully) better clarity (e.g., 'ax' to 'hax' to indicate it is a graphics handle to an axes object).
author Rik <rik@octave.org>
date Wed, 30 Mar 2022 20:40:27 -0700
parents 4b367bf5eb16
children 597f3ee61a48
line wrap: on
line source

########################################################################
##
## Copyright (C) 2001-2022 The Octave Project Developers
##
## See the file COPYRIGHT.md in the top-level directory of this
## distribution or <https://octave.org/copyright/>.
##
## This file is part of Octave.
##
## Octave is free software: you can redistribute it and/or modify it
## under the terms of the GNU General Public License as published by
## the Free Software Foundation, either version 3 of the License, or
## (at your option) any later version.
##
## Octave is distributed in the hope that it will be useful, but
## WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
## GNU General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with Octave; see the file COPYING.  If not, see
## <https://www.gnu.org/licenses/>.
##
########################################################################

## -*- texinfo -*-
## @deftypefn  {} {@var{pp} =} pchip (@var{x}, @var{y})
## @deftypefnx {} {@var{yi} =} pchip (@var{x}, @var{y}, @var{xi})
## Return the Piecewise Cubic Hermite Interpolating Polynomial (pchip) of
## points @var{x} and @var{y}.
##
## If called with two arguments, return the piecewise polynomial @var{pp}
## that may be used with @code{ppval} to evaluate the polynomial at specific
## points.
##
## When called with a third input argument, @code{pchip} evaluates the pchip
## polynomial at the points @var{xi}.  The third calling form is equivalent to
## @code{ppval (pchip (@var{x}, @var{y}), @var{xi})}.
##
## The variable @var{x} must be a strictly monotonic vector (either increasing
## or decreasing) of length @var{n}.
##
## @var{y} can be either a vector or array.  If @var{y} is a vector then it
## must be the same length @var{n} as @var{x}.  If @var{y} is an array then
## the size of @var{y} must have the form
## @tex
## $$[s_1, s_2, \cdots, s_k, n]$$
## @end tex
## @ifnottex
## @code{[@var{s1}, @var{s2}, @dots{}, @var{sk}, @var{n}]}
## @end ifnottex
## The array is reshaped internally to a matrix where the leading dimension is
## given by
## @tex
## $$s_1 s_2 \cdots s_k$$
## @end tex
## @ifnottex
## @code{@var{s1} * @var{s2} * @dots{} * @var{sk}}
## @end ifnottex
## and each row of this matrix is then treated separately.  Note that this is
## exactly opposite to @code{interp1} but is done for @sc{matlab}
## compatibility.
##
## @seealso{spline, ppval, mkpp, unmkpp}
## @end deftypefn

## Algorithm:
## S_k = a_k + b_k*x + c_k*x^2 + d_k*x^3; (spline polynomial)
##
## 4 conditions:
## S_k(x_k) = y_k;
## S_k(x_k+1) = y_k+1;
## S_k'(x_k) = y_k';
## S_k'(x_k+1) = y_k+1';

function ret = pchip (x, y, xi)

  if (nargin < 2)
    print_usage ();
  endif

  ## make row vector
  x = x(:).';
  n = length (x);

  ## Check the size and shape of y
  if (isvector (y))
    y = y(:).';  # force row vector
    szy = size (y);
    if (! size_equal (x, y))
      error ("pchip: length of X and Y must match");
    endif
  else
    szy = size (y);
    if (n != szy(end))
      error ("pchip: length of X and last dimension of Y must match");
    endif
    y = reshape (y, [prod(szy(1:end-1)), szy(end)]);
  endif

  h = diff (x);
  if (all (h < 0))
    x = fliplr (x);
    h = diff (x);
    y = fliplr (y);
  elseif (any (h <= 0))
    error ("pchip: X must be strictly monotonic");
  endif

  f1 = y(:, 1:n-1);

  ## Compute derivatives.
  d = __pchip_deriv__ (x, y, 2);
  d1 = d(:, 1:n-1);
  d2 = d(:, 2:n);

  ## This is taken from SLATEC.
  h = diag (h);

  delta = diff (y, 1, 2) / h;
  del1 = (d1 - delta) / h;
  del2 = (d2 - delta) / h;
  c3 = del1 + del2;
  c2 = -c3 - del1;
  c3 /= h;
  coeffs = cat (3, c3, c2, d1, f1);

  ret = mkpp (x, coeffs, szy(1:end-1));

  if (nargin == 3)
    ret = ppval (ret, xi);
  endif

endfunction


%!demo
%! x = 0:8;
%! y = [1, 1, 1, 1, 0.5, 0, 0, 0, 0];
%! xi = 0:0.01:8;
%! yspline = spline (x,y,xi);
%! ypchip = pchip (x,y,xi);
%! title ("pchip and spline fit to discontinuous function");
%! plot (xi,yspline, xi,ypchip,"-", x,y,"+");
%! legend ("spline", "pchip", "data");
%! %-------------------------------------------------------------------
%! % confirm that pchip agreed better to discontinuous data than spline

%!shared x, y, y2, pp, yi1, yi2, yi3
%! x = 0:8;
%! y = [1, 1, 1, 1, 0.5, 0, 0, 0, 0];
%!assert (pchip (x,y,x), y)
%!assert (pchip (x,y,x'), y')
%!assert (pchip (x',y',x'), y')
%!assert (pchip (x',y',x), y)
%!assert (isempty (pchip (x',y',[])))
%!assert (isempty (pchip (x,y,[])))
%!assert (pchip (x,[y;y],x), [pchip(x,y,x);pchip(x,y,x)])
%!assert (pchip (x,[y;y],x'), [pchip(x,y,x);pchip(x,y,x)])
%!assert (pchip (x',[y;y],x), [pchip(x,y,x);pchip(x,y,x)])
%!assert (pchip (x',[y;y],x'), [pchip(x,y,x);pchip(x,y,x)])
%!test
%! x = (0:8)*pi/4; y = [sin(x); cos(x)];
%! y2(:,:,1) = y; y2(:,:,2) = y+1; y2(:,:,3) = y-1;
%! pp = pchip (x, shiftdim (y2,2));
%! yi1 = ppval (pp, (1:4)*pi/4);
%! yi2 = ppval (pp, repmat ((1:4)*pi/4, [5,1]));
%! yi3 = ppval (pp, [pi/2,pi]);
%!assert (size (pp.coefs), [48,4])
%!assert (pp.pieces, 8)
%!assert (pp.order, 4)
%!assert (pp.dim, [3,2])
%!assert (ppval (pp,pi), [0,-1;1,0;-1,-2], 1e-14)
%!assert (yi3(:,:,2), ppval (pp,pi), 1e-14)
%!assert (yi3(:,:,1), [1,0;2,1;0,-1], 1e-14)
%!assert (squeeze (yi1(1,2,:)), [1/sqrt(2); 0; -1/sqrt(2);-1], 1e-14)
%!assert (size (yi2), [3,2,5,4])
%!assert (squeeze (yi2(1,2,3,:)), [1/sqrt(2); 0; -1/sqrt(2);-1], 1e-14)

%!error pchip (1,2)
%!error pchip (1,2,3)