view scripts/sparse/ilu.m @ 30875:5d3faba0342e

doc: Ensure documentation lists output argument when it exists for all m-files. For new users of Octave it is best to show explicit calling forms in the documentation and to show a return argument when it exists. * bp-table.cc, shift.m, accumarray.m, accumdim.m, bincoeff.m, bitcmp.m, bitget.m, bitset.m, blkdiag.m, celldisp.m, cplxpair.m, dblquad.m, flip.m, fliplr.m, flipud.m, idivide.m, int2str.m, interpft.m, logspace.m, num2str.m, polyarea.m, postpad.m, prepad.m, randi.m, repmat.m, rng.m, rot90.m, rotdim.m, structfun.m, triplequad.m, uibuttongroup.m, uicontrol.m, uipanel.m, uipushtool.m, uitoggletool.m, uitoolbar.m, waitforbuttonpress.m, help.m, __additional_help_message__.m, hsv.m, im2double.m, im2frame.m, javachk.m, usejava.m, argnames.m, char.m, formula.m, inline.m, __vectorize__.m, findstr.m, flipdim.m, strmatch.m, vectorize.m, commutation_matrix.m, cond.m, cross.m, duplication_matrix.m, expm.m, orth.m, rank.m, rref.m, trace.m, vech.m, cast.m, compare_versions.m, delete.m, dir.m, fileattrib.m, grabcode.m, gunzip.m, inputname.m, license.m, list_primes.m, ls.m, mexext.m, movefile.m, namelengthmax.m, nargoutchk.m, nthargout.m, substruct.m, swapbytes.m, ver.m, verLessThan.m, what.m, fminunc.m, fsolve.m, fzero.m, optimget.m, __fdjac__.m, matlabroot.m, savepath.m, campos.m, camroll.m, camtarget.m, camup.m, camva.m, camzoom.m, clabel.m, diffuse.m, legend.m, orient.m, rticks.m, specular.m, thetaticks.m, xlim.m, xtickangle.m, xticklabels.m, xticks.m, ylim.m, ytickangle.m, yticklabels.m, yticks.m, zlim.m, ztickangle.m, zticklabels.m, zticks.m, ellipsoid.m, isocolors.m, isonormals.m, stairs.m, surfnorm.m, __actual_axis_position__.m, __pltopt__.m, close.m, graphics_toolkit.m, pan.m, print.m, printd.m, __ghostscript__.m, __gnuplot_print__.m, __opengl_print__.m, rotate3d.m, subplot.m, zoom.m, compan.m, conv.m, poly.m, polyaffine.m, polyder.m, polyint.m, polyout.m, polyreduce.m, polyvalm.m, roots.m, prefdir.m, prefsfile.m, profexplore.m, profexport.m, profshow.m, powerset.m, unique.m, arch_rnd.m, arma_rnd.m, autoreg_matrix.m, bartlett.m, blackman.m, detrend.m, durbinlevinson.m, fftconv.m, fftfilt.m, fftshift.m, fractdiff.m, hamming.m, hanning.m, hurst.m, ifftshift.m, rectangle_lw.m, rectangle_sw.m, triangle_lw.m, sinc.m, sinetone.m, sinewave.m, spectral_adf.m, spectral_xdf.m, spencer.m, ilu.m, __sprand__.m, sprand.m, sprandn.m, sprandsym.m, treelayout.m, beta.m, betainc.m, betaincinv.m, betaln.m, cosint.m, expint.m, factorial.m, gammainc.m, gammaincinv.m, lcm.m, nthroot.m, perms.m, reallog.m, realpow.m, realsqrt.m, sinint.m, hadamard.m, hankel.m, hilb.m, invhilb.m, magic.m, pascal.m, rosser.m, toeplitz.m, vander.m, wilkinson.m, center.m, corr.m, cov.m, discrete_cdf.m, discrete_inv.m, discrete_pdf.m, discrete_rnd.m, empirical_cdf.m, empirical_inv.m, empirical_pdf.m, empirical_rnd.m, kendall.m, kurtosis.m, mad.m, mean.m, meansq.m, median.m, mode.m, moment.m, range.m, ranks.m, run_count.m, skewness.m, spearman.m, statistics.m, std.m, base2dec.m, bin2dec.m, blanks.m, cstrcat.m, deblank.m, dec2base.m, dec2bin.m, dec2hex.m, hex2dec.m, index.m, regexptranslate.m, rindex.m, strcat.m, strjust.m, strtrim.m, strtrunc.m, substr.m, untabify.m, __have_feature__.m, __prog_output_assert__.m, __run_test_suite__.m, example.m, fail.m, asctime.m, calendar.m, ctime.m, date.m, etime.m: Add return arguments to @deftypefn macros where they were missing. Rename variables in functions (particularly generic "retval") to match documentation. Rename some return variables for (hopefully) better clarity (e.g., 'ax' to 'hax' to indicate it is a graphics handle to an axes object).
author Rik <rik@octave.org>
date Wed, 30 Mar 2022 20:40:27 -0700
parents 796f54d4ddbf
children 597f3ee61a48
line wrap: on
line source

########################################################################
##
## Copyright (C) 2013-2022 The Octave Project Developers
##
## See the file COPYRIGHT.md in the top-level directory of this
## distribution or <https://octave.org/copyright/>.
##
## This file is part of Octave.
##
## Octave is free software: you can redistribute it and/or modify it
## under the terms of the GNU General Public License as published by
## the Free Software Foundation, either version 3 of the License, or
## (at your option) any later version.
##
## Octave is distributed in the hope that it will be useful, but
## WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
## GNU General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with Octave; see the file COPYING.  If not, see
## <https://www.gnu.org/licenses/>.
##
########################################################################

## -*- texinfo -*-
## @deftypefn  {} {@var{LUA} =} ilu (@var{A})
## @deftypefnx {} {@var{LUA} =} ilu (@var{A}, @var{opts})
## @deftypefnx {} {[@var{L}, @var{U}] =} ilu (@dots{})
## @deftypefnx {} {[@var{L}, @var{U}, @var{P}] =} ilu (@dots{})
##
## Compute the incomplete LU factorization of the sparse square matrix @var{A}.
##
## @code{ilu} returns a unit lower triangular matrix @var{L}, an upper
## triangular matrix @var{U}, and optionally a permutation matrix @var{P}, such
## that @code{@var{L}*@var{U}} approximates @code{@var{P}*@var{A}}.
##
## The factors given by this routine may be useful as preconditioners for a
## system of linear equations being solved by iterative methods such as BICG
## (BiConjugate Gradients) or GMRES (Generalized Minimum Residual Method).
##
## The factorization may be modified by passing options in a structure
## @var{opts}.  The option name is a field of the structure and the setting
## is the value of field.  Names and specifiers are case sensitive.
##
## @table @code
## @item type
## Type of factorization.
##
## @table @asis
## @item @qcode{"nofill"} (default)
## ILU factorization with no fill-in (ILU(0)).
##
## Additional supported options: @code{milu}.
##
## @item @qcode{"crout"}
## Crout version of ILU factorization (@nospell{ILUC}).
##
## Additional supported options: @code{milu}, @code{droptol}.
##
## @item @qcode{"ilutp"}
## ILU factorization with threshold and pivoting.
##
## Additional supported options: @code{milu}, @code{droptol}, @code{udiag},
## @code{thresh}.
## @end table
##
## @item droptol
## A non-negative scalar specifying the drop tolerance for factorization.  The
## default value is 0 which produces the complete LU factorization.
##
## Non-diagonal entries of @var{U} are set to 0 unless
##
## @code{abs (@var{U}(i,j)) >= droptol * norm (@var{A}(:,j))}.
##
## Non-diagonal entries of @var{L} are set to 0 unless
##
## @code{abs (@var{L}(i,j)) >= droptol * norm (@var{A}(:,j))/@var{U}(j,j)}.
##
## @item milu
## Modified incomplete LU factorization:
##
## @table @asis
## @item @qcode{"row"}
## Row-sum modified incomplete LU factorization.
## The factorization preserves row sums:
## @code{@var{A} * e = @var{L} * @var{U} * e}, where e is a vector of ones.
##
## @item @qcode{"col"}
## Column-sum modified incomplete LU factorization.
## The factorization preserves column sums:
## @code{e' * @var{A} = e' * @var{L} * @var{U}}.
##
## @item @qcode{"off"} (default)
## Row and column sums are not necessarily preserved.
## @end table
##
## @item udiag
## If true, any zeros on the diagonal of the upper triangular factor are
## replaced by the local drop tolerance
## @code{droptol * norm (@var{A}(:,j))/@var{U}(j,j)}.  The default is false.
##
## @item thresh
## Pivot threshold for factorization.  It can range between 0 (diagonal
## pivoting) and 1 (default), where the maximum magnitude entry in the column
## is chosen to be the pivot.
## @end table
##
## If @code{ilu} is called with just one output, the returned matrix is
## @code{@var{L} + @var{U} - speye (size (@var{A}))}, where @var{L} is unit
## lower triangular and @var{U} is upper triangular.
##
## With two outputs, @code{ilu} returns a unit lower triangular matrix @var{L}
## and an upper triangular matrix @var{U}.  For @var{opts}.type ==
## @qcode{"ilutp"}, one of the factors is permuted based on the value of
## @var{opts}.milu.  When @var{opts}.milu == @qcode{"row"}, @var{U} is a
## column permuted upper triangular factor.  Otherwise, @var{L} is a
## row-permuted unit lower triangular factor.
##
## If there are three named outputs and @var{opts}.milu != @qcode{"row"},
## @var{P} is returned such that @var{L} and @var{U} are incomplete factors
## of @code{@var{P}*@var{A}}.  When @var{opts}.milu == @qcode{"row"}, @var{P}
## is returned such that @var{L} and @var{U} are incomplete factors of
## @code{@var{A}*@var{P}}.
##
## EXAMPLES
##
## @example
## @group
## A = gallery ("neumann", 1600) + speye (1600);
## opts.type = "nofill";
## nnz (A)
## ans = 7840
##
## nnz (lu (A))
## ans = 126478
##
## nnz (ilu (A, opts))
## ans = 7840
## @end group
## @end example
##
## This shows that @var{A} has 7,840 nonzeros, the complete LU factorization
## has 126,478 nonzeros, and the incomplete LU factorization, with 0 level of
## fill-in, has 7,840 nonzeros, the same amount as @var{A}.  Taken from:
## @url{https://www.mathworks.com/help/matlab/ref/ilu.html}
##
## @example
## @group
## A = gallery ("wathen", 10, 10);
## b = sum (A, 2);
## tol = 1e-8;
## maxit = 50;
## opts.type = "crout";
## opts.droptol = 1e-4;
## [L, U] = ilu (A, opts);
## x = bicg (A, b, tol, maxit, L, U);
## norm (A * x - b, inf)
## @end group
## @end example
##
## This example uses ILU as preconditioner for a random FEM-Matrix, which has a
## large condition number.  Without @var{L} and @var{U} BICG would not
## converge.
##
## @seealso{lu, ichol, bicg, gmres}
## @end deftypefn

function [L, U, P] = ilu (A, opts = struct ())

  if (nargin < 1)
    print_usage ();
  endif

  if (! (issparse (A) && issquare (A)))
    error ("ilu: A must be a sparse square matrix");
  endif

  if (! isstruct (opts))
    error ("ilu: OPTS must be a structure");
  endif

  ## If A is empty then return empty L, U and P for Matlab compatibility
  if (isempty (A))
    L = U = P = A;
    return;
  endif

  ## Parse input options
  if (! isfield (opts, "type"))
    opts.type = "nofill";  # set default
  else
    type = tolower (getfield (opts, "type"));
    if (! any (strcmp (type, {"nofill", "crout", "ilutp"})))
      error ("ilu: invalid TYPE specified");
    endif
    opts.type = type;
  endif

  if (! isfield (opts, "droptol"))
    opts.droptol = 0;      # set default
  else
    if (! (isreal (opts.droptol) && isscalar (opts.droptol)
           && opts.droptol >= 0))
      error ("ilu: DROPTOL must be a non-negative real scalar");
    endif
  endif

  if (! isfield (opts, "milu"))
    opts.milu = "off";     # set default
  else
    milu = tolower (getfield (opts, "milu"));
    if (! any (strcmp (milu, {"off", "col", "row"})))
      error ('ilu: MILU must be one of "off", "col", or "row"');
    endif
    opts.milu = milu;
  endif

  if (! isfield (opts, "udiag"))
    opts.udiag = 0;        # set default
  else
    if (! isscalar (opts.udiag) || (opts.udiag != 0 && opts.udiag != 1))
      error ("ilu: UDIAG must be 0 or 1");
    endif
  endif

  if (! isfield (opts, "thresh"))
    opts.thresh = 1;       # set default
  else
    if (! (isreal (opts.thresh) && isscalar (opts.thresh))
        || opts.thresh < 0 || opts.thresh > 1)
      error ("ilu: THRESH must be a scalar in the range [0, 1]");
    endif
  endif

  n = length (A);

  ## Delegate to specialized ILU
  switch (opts.type)
    case "nofill"
        [L, U] = __ilu0__ (A, opts.milu);
        if (nargout == 3)
          P = speye (length (A));
        endif
    case "crout"
        [L, U] = __iluc__ (A, opts.droptol, opts.milu);
        if (nargout == 3)
          P = speye (length (A));
        endif
    case "ilutp"
        if (nargout == 3)
          [L, U, P] = __ilutp__ (A, opts.droptol, opts.thresh,
                                    opts.milu, opts.udiag);
        else
          [L, U] = __ilutp__ (A, opts.droptol, opts.thresh,
                                 opts.milu, opts.udiag);
        endif
  endswitch

  if (nargout == 1)
    L = L + U - speye (n);
  endif

endfunction


%!shared n, dtol, A
%! n = 1600;
%! dtol = 0.1;
%! A = gallery ("neumann", n) + speye (n);

%!test
%! opts.type = "nofill";
%! assert (nnz (ilu (A, opts)), 7840);

## This test has been verified in both Matlab and Octave.
%!test
%! opts.type = "crout";
%! opts.milu = "row";
%! opts.droptol = dtol;
%! [L, U] = ilu (A, opts);
%! e = ones (columns (A),1);
%! assert (norm (A*e - L*U*e), 1e-14, 1e-14);
%!test
%! opts.type = "crout";
%! opts.droptol = dtol;
%! [L, U] = ilu (A, opts);
%! assert (norm (A - L * U, "fro") / norm (A, "fro"), 0.05, 1e-2);

## Check if the elements in U satisfy the non-dropping condition.
%!test
%! opts.type = "crout";
%! opts.droptol = dtol;
%! [L, U] = ilu (A, opts);
%! for j = 1:n
%!   cmp_value = dtol * norm (A(:, j));
%!   non_zeros = nonzeros (U(:, j));
%!   assert (abs (non_zeros) >= cmp_value);
%! endfor
%!test
%! opts.type = "ilutp";
%! opts.droptol = dtol;
%! [L, U] = ilu (A, opts);
%! for j = 1:n
%!   cmp_value = dtol * norm (A(:, j));
%!   non_zeros = nonzeros (U(:, j));
%!   assert (abs (non_zeros) >= cmp_value);
%! endfor

## Check that the complete LU factorisation with crout and ilutp algorithms
## produce the same result.
%!test
%! opts.type = "crout";
%! opts.droptol = 0;
%! [L1, U1] = ilu (A, opts);
%! opts.type = "ilutp";
%! opts.thresh = 0;
%! [L2, U2] = ilu (A, opts);
%! assert (norm (L1 - L2, "fro") / norm (L1, "fro"), 0, eps);
%! assert (norm (U1 - U2, "fro") / norm (U1, "fro"), 0, eps);

## Restore rand "state" value
%!shared old_rand_state, restore_state
%! ## Save and restore the state of the random number generator that is used by
%! ## the unit tests in this file.
%! old_rand_state = rand ("state");
%! restore_state = onCleanup (@() rand ("state", old_rand_state));

## Tests for real matrices of different sizes for ilu0, iluc and ilutp.
## The difference A - L*U should be not greater than eps because with droptol
## equal to 0, the LU complete factorization is performed.
%!shared n_tiny, n_small, n_medium, n_large, A_tiny, A_small, A_medium, A_large
%! n_tiny = 5;
%! n_small = 40;
%! n_medium = 600;
%! n_large = 10000;
%! A_tiny = spconvert ([1 4 2 3 3 4 2 5; 1 1 2 3 4 4 5 5; 1 2 3 4 5 6 7 8]');
%! ## initialize generator to make behavior reproducible
%! rand ("state", 42);
%! A_small = sprand (n_small, n_small, 1/n_small) + speye (n_small);
%! A_medium = sprand (n_medium, n_medium, 1/n_medium) + speye (n_medium);
%! A_large = sprand (n_large, n_large, 1/n_large/10) + speye (n_large);

%!test
%! opts.type = "nofill";
%! [L, U] = ilu (A_tiny);
%! assert (norm (A_tiny - L*U, "fro") / norm (A_tiny, "fro"), 0, n_tiny * eps);
%!test
%! opts.type = "nofill";
%! [L, U] = ilu (A_small);
%! assert (norm (A_small - L*U, "fro") / norm (A_small, "fro"), 0, 1);
%!test
%! opts.type = "nofill";
%! [L, U] = ilu (A_medium);
%! assert (norm (A_medium - L*U, "fro") / norm (A_medium, "fro"), 0, 1);
%!test
%! opts.type = "nofill";
%! [L, U] = ilu (A_large);
%! assert (norm (A_large - L*U, "fro") / norm (A_large, "fro"), 0, 1);

%!test
%! opts.type = "crout";
%! [L, U] = ilu (A_tiny, opts);
%! assert (norm (A_tiny - L*U, "fro") / norm (A_tiny, "fro"), eps, eps);
%!test
%! opts.type = "crout";
%! [L, U] = ilu (A_small, opts);
%! assert (norm (A_small - L*U, "fro") / norm (A_small, "fro"), eps, eps);
%!test
%! opts.type = "crout";
%! [L, U] = ilu (A_medium, opts);
%! assert (norm (A_medium - L*U, "fro") / norm (A_medium, "fro"), eps, eps);
%!test
%! opts.type = "crout";
%! [L, U] = ilu (A_large, opts);
%! assert (norm (A_large - L*U, "fro") / norm (A_large, "fro"), eps, eps);

%!test
%! opts.type = "ilutp";
%! opts.droptol = 0;
%! opts.thresh = 0;
%! [L, U] = ilu (A_tiny, opts);
%! assert (norm (A_tiny - L*U, "fro") / norm (A_tiny, "fro"), eps, eps);
%!test
%! opts.type = "ilutp";
%! opts.droptol = 0;
%! opts.thresh = 0;
%! [L, U] = ilu (A_small, opts);
%! assert (norm (A_small - L*U, "fro") / norm (A_small, "fro"), eps, eps);
%!test
%! opts.type = "ilutp";
%! opts.droptol = 0;
%! opts.thresh = 0;
%! [L, U] = ilu (A_medium, opts);
%! assert (norm (A_medium - L*U, "fro") / norm (A_medium, "fro"), eps, eps);
%!test
%! opts.type = "ilutp";
%! opts.droptol = 0;
%! opts.thresh = 0;
%! [L, U] = ilu (A_large, opts);
%! assert (norm (A_large - L*U, "fro") / norm (A_large, "fro"), eps, eps);

## Tests for complex matrices of different sizes for ilu0, iluc and ilutp.
%!shared n_tiny, n_small, n_medium, n_large, A_tiny, A_small, A_medium, A_large
%! n_tiny = 5;
%! n_small = 40;
%! n_medium = 600;
%! n_large = 10000;
%! A_tiny = spconvert ([1 4 2 3 3 4 2 5; 1 1 2 3 4 4 5 5; 1 2 3 4 5 6 7 8]');
%! A_tiny(1,1) += 1i;
%! ## initialize generator to make behavior reproducible
%! rand ("state", 42);
%! A_small = sprand (n_small, n_small, 1/n_small) + ...
%!   i * sprand (n_small, n_small, 1/n_small) + speye (n_small);
%! A_medium = sprand (n_medium, n_medium, 1/n_medium) + ...
%!   i * sprand (n_medium, n_medium, 1/n_medium) + speye (n_medium);
%! A_large = sprand (n_large, n_large, 1/n_large/10) + ...
%!   i * sprand (n_large, n_large, 1/n_large/10) + speye (n_large);

%!test
%! opts.type = "nofill";
%! [L, U] = ilu (A_tiny);
%! assert (norm (A_tiny - L*U, "fro") / norm (A_tiny, "fro"), 0, n_tiny * eps);
%!test
%! opts.type = "nofill";
%! [L, U] = ilu (A_small);
%! assert (norm (A_small - L*U, "fro") / norm (A_small, "fro"), 0, 1);
%!test
%! opts.type = "nofill";
%! [L, U] = ilu (A_medium);
%! assert (norm (A_medium - L*U, "fro") / norm (A_medium, "fro"), 0, 1);
%!test
%! opts.type = "nofill";
%! [L, U] = ilu (A_large);
%! assert (norm (A_large - L*U, "fro") / norm (A_large, "fro"), 0, 1);

%!test
%! opts.type = "crout";
%! [L, U] = ilu (A_tiny, opts);
%! assert (norm (A_tiny - L*U, "fro") / norm (A_tiny, "fro"), eps, eps);
%!test
%! opts.type = "crout";
%! [L, U] = ilu (A_small, opts);
%! assert (norm (A_small - L*U, "fro") / norm (A_small, "fro"), eps, eps);
%!test
%! opts.type = "crout";
%! [L, U] = ilu (A_medium, opts);
%! assert (norm (A_medium - L*U, "fro") / norm (A_medium, "fro"), eps, eps);
%!test
%! opts.type = "crout";
%! [L, U] = ilu (A_large, opts);
%! assert (norm (A_large - L*U, "fro") / norm (A_large, "fro"), eps, eps);

%!test
%! opts.type = "ilutp";
%! opts.droptol = 0;
%! opts.thresh = 0;
%! [L, U] = ilu (A_tiny, opts);
%! assert (norm (A_tiny - L*U, "fro") / norm (A_tiny, "fro"), eps, eps);
%!test
%! opts.type = "ilutp";
%! opts.droptol = 0;
%! opts.thresh = 0;
%! [L, U] = ilu (A_small, opts);
%! assert (norm (A_small - L*U, "fro") / norm (A_small, "fro"), eps, eps);
%!test
%! opts.type = "ilutp";
%! opts.droptol = 0;
%! opts.thresh = 0;
%! [L, U] = ilu (A_medium, opts);
%! assert (norm (A_medium - L*U, "fro") / norm (A_medium, "fro"), eps, eps);
%!test
%! opts.type = "ilutp";
%! opts.droptol = 0;
%! opts.thresh = 0;
%! [L, U] = ilu (A_large, opts);
%! assert (norm (A_large - L*U, "fro") / norm (A_large, "fro"), eps, eps);

## Specific tests for ilutp
%!shared A
%! A = sparse ([0 0 4 3 1; 5 1 2.3 2 4.5; 0 0 0 2 1;0 0 8 0 2.2; 0 0 9 9 1 ]);

%!test
%! opts.udiag = 1;
%! opts.type = "ilutp";
%! opts.droptol = 0.2;
%! [L, U, P] = ilu (A, opts);
%! assert (norm (U, "fro"), 17.4577, 1e-4);
%! assert (norm (L, "fro"), 2.4192, 1e-4);

%!error <encountered a pivot equal to 0>
%! opts.type = "ilutp";
%! opts.udiag = 0;
%! opts.droptol = 0.2;
%! ilu (A, opts);

## Matlab R2017b doesn't error, but returns a singular L which isn't helpful.
%!error <encountered a pivot equal to 0>
%! A = sparse ([3 1 0 0 4; 3 1 0 0 -2;0 0 8 0 0; 0 4 0 4 -4.5; 0 -1 0 0 1]);
%! opts.type = "ilutp";
%! opts.droptol = 0;
%! opts.thresh = 0;
%! opts.milu = "row";
%! [L, U, P] = ilu (A, opts);

%!test <*53440>
%! A = sparse (magic (4));
%! opts.type = "ilutp";
%! [L, U] = ilu (A, opts);
%! assert (L * U, A, eps);

## Tests for input validation
%!shared A_tiny, opts
%! A_tiny = spconvert ([1 4 2 3 3 4 2 5; 1 1 2 3 4 4 5 5; 1 2 3 4 5 6 7 8]');

%!test
%! [L, U] = ilu (sparse ([]));
%! assert (isempty (L));
%! assert (isempty (U));
%! opts.type = "crout";
%! [L, U] = ilu (sparse ([]), opts);
%! assert (isempty (L));
%! assert (isempty (U));
%! opts.type = "ilutp";
%! [L, U] = ilu (sparse ([]), opts);
%! assert (isempty (L));
%! assert (isempty (U));

%!error <A must be a sparse square matrix> ilu (0)
%!error <A must be a sparse square matrix> ilu ([])
%!error <zero on the diagonal> ilu (sparse (0))

%!error <invalid TYPE specified>
%! opts.type = "foo";
%! ilu (A_tiny, opts);
%!error <invalid TYPE specified>
%! opts.type = 1;
%! ilu (A_tiny, opts);
%!error <invalid TYPE specified>
%! opts.type = [];
%! ilu (A_tiny, opts);

%!error <DROPTOL must be a non-negative real scalar>
%! clear opts;
%! opts.droptol = -1;
%! ilu (A_tiny, opts);
%!error <DROPTOL must be a non-negative real scalar>
%! opts.droptol = 0.5i;
%! ilu (A_tiny, opts);
%!error <DROPTOL must be a non-negative real scalar>
%! opts.droptol = [];
%! ilu (A_tiny, opts);

%!error <MILU must be one of "off", "col", or "row">
%! clear opts;
%! opts.milu = "foo";
%! ilu (A_tiny, opts);
%!error <MILU must be one of "off", "col", or "row">
%! opts.milu = 1;
%! ilu (A_tiny, opts);
%!error <MILU must be one of "off", "col", or "row">
%! opts.milu = [];
%! ilu (A_tiny, opts);

%!error <UDIAG must be 0 or 1>
%! clear opts;
%! opts.udiag = -1;
%! ilu (A_tiny, opts);
%!error <UDIAG must be 0 or 1>
%! opts.udiag = 0.5i;
%! ilu (A_tiny, opts);
%!error <UDIAG must be 0 or 1>
%! opts.udiag = [];
%! ilu (A_tiny, opts);

%!error <THRESH must be a scalar in the range \[0, 1\]>
%! clear opts;
%! opts.thresh = -1;
%! ilu (A_tiny, opts);
%!error <THRESH must be a scalar in the range \[0, 1\]>
%! opts.thresh = 0.5i;
%! ilu (A_tiny, opts);
%!error <THRESH must be a scalar in the range \[0, 1\]>
%! opts.thresh = [];
%! ilu (A_tiny, opts);