view scripts/specfun/betaincinv.m @ 30875:5d3faba0342e

doc: Ensure documentation lists output argument when it exists for all m-files. For new users of Octave it is best to show explicit calling forms in the documentation and to show a return argument when it exists. * bp-table.cc, shift.m, accumarray.m, accumdim.m, bincoeff.m, bitcmp.m, bitget.m, bitset.m, blkdiag.m, celldisp.m, cplxpair.m, dblquad.m, flip.m, fliplr.m, flipud.m, idivide.m, int2str.m, interpft.m, logspace.m, num2str.m, polyarea.m, postpad.m, prepad.m, randi.m, repmat.m, rng.m, rot90.m, rotdim.m, structfun.m, triplequad.m, uibuttongroup.m, uicontrol.m, uipanel.m, uipushtool.m, uitoggletool.m, uitoolbar.m, waitforbuttonpress.m, help.m, __additional_help_message__.m, hsv.m, im2double.m, im2frame.m, javachk.m, usejava.m, argnames.m, char.m, formula.m, inline.m, __vectorize__.m, findstr.m, flipdim.m, strmatch.m, vectorize.m, commutation_matrix.m, cond.m, cross.m, duplication_matrix.m, expm.m, orth.m, rank.m, rref.m, trace.m, vech.m, cast.m, compare_versions.m, delete.m, dir.m, fileattrib.m, grabcode.m, gunzip.m, inputname.m, license.m, list_primes.m, ls.m, mexext.m, movefile.m, namelengthmax.m, nargoutchk.m, nthargout.m, substruct.m, swapbytes.m, ver.m, verLessThan.m, what.m, fminunc.m, fsolve.m, fzero.m, optimget.m, __fdjac__.m, matlabroot.m, savepath.m, campos.m, camroll.m, camtarget.m, camup.m, camva.m, camzoom.m, clabel.m, diffuse.m, legend.m, orient.m, rticks.m, specular.m, thetaticks.m, xlim.m, xtickangle.m, xticklabels.m, xticks.m, ylim.m, ytickangle.m, yticklabels.m, yticks.m, zlim.m, ztickangle.m, zticklabels.m, zticks.m, ellipsoid.m, isocolors.m, isonormals.m, stairs.m, surfnorm.m, __actual_axis_position__.m, __pltopt__.m, close.m, graphics_toolkit.m, pan.m, print.m, printd.m, __ghostscript__.m, __gnuplot_print__.m, __opengl_print__.m, rotate3d.m, subplot.m, zoom.m, compan.m, conv.m, poly.m, polyaffine.m, polyder.m, polyint.m, polyout.m, polyreduce.m, polyvalm.m, roots.m, prefdir.m, prefsfile.m, profexplore.m, profexport.m, profshow.m, powerset.m, unique.m, arch_rnd.m, arma_rnd.m, autoreg_matrix.m, bartlett.m, blackman.m, detrend.m, durbinlevinson.m, fftconv.m, fftfilt.m, fftshift.m, fractdiff.m, hamming.m, hanning.m, hurst.m, ifftshift.m, rectangle_lw.m, rectangle_sw.m, triangle_lw.m, sinc.m, sinetone.m, sinewave.m, spectral_adf.m, spectral_xdf.m, spencer.m, ilu.m, __sprand__.m, sprand.m, sprandn.m, sprandsym.m, treelayout.m, beta.m, betainc.m, betaincinv.m, betaln.m, cosint.m, expint.m, factorial.m, gammainc.m, gammaincinv.m, lcm.m, nthroot.m, perms.m, reallog.m, realpow.m, realsqrt.m, sinint.m, hadamard.m, hankel.m, hilb.m, invhilb.m, magic.m, pascal.m, rosser.m, toeplitz.m, vander.m, wilkinson.m, center.m, corr.m, cov.m, discrete_cdf.m, discrete_inv.m, discrete_pdf.m, discrete_rnd.m, empirical_cdf.m, empirical_inv.m, empirical_pdf.m, empirical_rnd.m, kendall.m, kurtosis.m, mad.m, mean.m, meansq.m, median.m, mode.m, moment.m, range.m, ranks.m, run_count.m, skewness.m, spearman.m, statistics.m, std.m, base2dec.m, bin2dec.m, blanks.m, cstrcat.m, deblank.m, dec2base.m, dec2bin.m, dec2hex.m, hex2dec.m, index.m, regexptranslate.m, rindex.m, strcat.m, strjust.m, strtrim.m, strtrunc.m, substr.m, untabify.m, __have_feature__.m, __prog_output_assert__.m, __run_test_suite__.m, example.m, fail.m, asctime.m, calendar.m, ctime.m, date.m, etime.m: Add return arguments to @deftypefn macros where they were missing. Rename variables in functions (particularly generic "retval") to match documentation. Rename some return variables for (hopefully) better clarity (e.g., 'ax' to 'hax' to indicate it is a graphics handle to an axes object).
author Rik <rik@octave.org>
date Wed, 30 Mar 2022 20:40:27 -0700
parents 796f54d4ddbf
children c8ad083a5802
line wrap: on
line source

########################################################################
##
## Copyright (C) 2017-2022 The Octave Project Developers
##
## See the file COPYRIGHT.md in the top-level directory of this
## distribution or <https://octave.org/copyright/>.
##
## This file is part of Octave.
##
## Octave is free software: you can redistribute it and/or modify it
## under the terms of the GNU General Public License as published by
## the Free Software Foundation, either version 3 of the License, or
## (at your option) any later version.
##
## Octave is distributed in the hope that it will be useful, but
## WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
## GNU General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with Octave; see the file COPYING.  If not, see
## <https://www.gnu.org/licenses/>.
##
########################################################################

## -*- texinfo -*-
## @deftypefn  {} {@var{x} =} betaincinv (@var{y}, @var{a}, @var{b})
## @deftypefnx {} {@var{x} =} betaincinv (@var{y}, @var{a}, @var{b}, "lower")
## @deftypefnx {} {@var{x} =} betaincinv (@var{y}, @var{a}, @var{b}, "upper")
## Compute the inverse of the normalized incomplete beta function.
##
## The normalized incomplete beta function is defined as
## @tex
## $$
##  I_x (a, b) = {1 \over {B(a,b)}} \displaystyle{\int_0^x t^{a-1} (1-t)^{b-1} dt}
## $$
## @end tex
## @ifnottex
##
## @example
## @group
##                           x
##                          /
##                  1       |
## I_x (a, b) = ----------  | t^(a-1) (1-t)^(b-1) dt
##              beta (a,b)  |
##                          /
##                         0
## @end group
## @end example
##
## @end ifnottex
##
## If two inputs are scalar, then @code{betaincinv (@var{y}, @var{a}, @var{b})}
## is returned for each of the other inputs.
##
## If two or more inputs are not scalar, the sizes of them must agree, and
## @code{betaincinv} is applied element-by-element.
##
## The variable @var{y} must be in the interval [0,1], while @var{a} and
## @var{b} must be real and strictly positive.
##
## By default, @var{tail} is @qcode{"lower"} and the inverse of the incomplete
## beta function integrated from 0 to @var{x} is computed.  If @var{tail} is
## @qcode{"upper"} then the complementary function integrated from @var{x} to 1
## is inverted.
##
## The function is computed by standard Newton's method, by solving
## @tex
## $$
##  y - I_x (a, b) = 0
## $$
## @end tex
## @ifnottex
##
## @example
## @var{y} - betainc (@var{x}, @var{a}, @var{b}) = 0
## @end example
##
## @end ifnottex
##
## @seealso{betainc, beta, betaln}
## @end deftypefn

function x = betaincinv (y, a, b, tail = "lower")

  if (nargin < 3)
    print_usage ();
  endif

  [err, y, a, b] = common_size (y, a, b);
  if (err > 0)
    error ("betaincinv: Y, A, and B must be of common size or scalars");
  endif

  if (! (isfloat (y) && isfloat (a) && isfloat (b)
         && isreal (y) && isreal (a) && isreal (b)))
    error ("betaincinv: Y, A, and B must be real, floating point values");
  endif

  ## Remember original shape of data, but convert to column vector for calcs.
  orig_sz = size (y);
  y = y(:);
  a = a(:);
  b = b(:);

  if (any ((y < 0) | (y > 1)))
    error ("betaincinv: Y must be in the range [0, 1]");
  endif

  if (any (a <= 0))
    error ("betaincinv: A must be strictly positive");
  endif

  if (any (b <= 0))
    error ("betaincinv: B must be strictly positive");
  endif

  ## If any of the arguments is single then the output should be as well.
  if (isa (y, "single") || isa (a, "single") || isa (b, "single"))
    y = single (y);
    a = single (a);
    b = single (b);
  endif

  if (strcmpi (tail, "lower"))
    ys = y;
  elseif (strcmpi (tail, "upper"))
    ys = 1 - y;  # only for computation of initial points, no loss of accuracy
  else
    error ("betaincinv: invalid value for TAIL");
  endif

  ## Choose starting point for Newton's Method to guarantee convergence.
  ## If (a-1)*(b-1) > 0, F has a point of inflection at x = (a-1)/(a+b-2).
  ## In this case, it is convex on (0,x) and concave on (x,1) if a>1; otherwise
  ## it is the other way round.  If (a-1)*(b-1) <= 0, there is no point of
  ## inflection, and it is everywhere convex for a>1 and concave otherwise.
  ## We thus choose our starting x for the Newton iterations so that we stay
  ## within a region of constant sign of curvature and on the correct side of
  ## the eventual solution, guaranteeing convergence.  Curvatures above are to
  ## be understood under the condition tail=="lower".

  ## Initialize output array
  x = x_i = y_i = zeros (size (y), class (y));

  ## Have point of inflection
  idx = find ((a - 1) .* (b - 1) > 0);
  if (! isempty (idx))
    x_i(idx) = (a(idx) - 1) ./ (a(idx) + b(idx) - 2);
    y_i(idx) = betainc (x_i(idx), a(idx), b(idx));
  endif

  ## Converge outwards
  tmpidx = find (a(idx) > 1);
  if (! isempty (tmpidx))
    x(idx(tmpidx)) = x_i(idx(tmpidx));
  endif
  ## Converge inwards
  ## To the left of inflection point
  tmpidx = idx(find ((a(idx) <= 1) & (y_i(idx) >= ys(idx))));
  if (! isempty (tmpidx))
    x(tmpidx) = (ys(tmpidx) ./ y_i(tmpidx)).^(1 ./ a(tmpidx)) .* x_i(tmpidx);
  endif
  ## To the right of inflection point
  tmpidx = idx(find ((a(idx) <= 1) & (y_i(idx) < ys(idx))));
  if (! isempty (tmpidx))
    x(tmpidx) = 1 - ...
                ((1 - ys(tmpidx)) ./ (1 - y_i(tmpidx))).^(1 ./ b(tmpidx)) ...
                .* (1 - x_i(tmpidx));
  endif

  ## Have no point of inflection
  idx = find ((a - 1) .* (b - 1) <= 0);

  ## Negative curvature
  tmpidx = idx(find (a(idx) < 1));
  if (! isempty (tmpidx))
    x(tmpidx) = (ys(tmpidx) .* beta (a(tmpidx), b(tmpidx)) .* a(tmpidx)) ...
                .^ (1 ./ a(tmpidx));
  endif
  ## Positive curvature
  tmpidx = idx(find (a(idx) >= 1));
  if (! isempty (tmpidx))
    x(tmpidx) = 1 - ...
                ((1 - ys(tmpidx)) .* beta (a(tmpidx), b(tmpidx)) .* b(tmpidx)) ...
                .^ (1 ./ b(tmpidx));
  endif

  ## Cleanup memory before continuing
  clear ys x_i y_i idx tmpidx

  if (strcmpi (tail, "lower"))
    x(y == 0) = 0;
    x(y == 1) = 1;
    F = @(x, a, b, y) y - betainc (x, a, b);
    JF = @(x, a, b, Bln) -exp ((a-1) .* log (x) + (b-1) .* log1p (-x) - Bln);
  else
    x(y == 0) = 1;
    x(y == 1) = 0;
    F = @(x, a, b, y) y - betainc (x, a, b, "upper");
    JF = @(x, a, b, Bln) exp ((a-1) .* log (x) + (b-1) .* log1p (-x) - Bln);
  endif

  x = newton_method (F, JF, x, a, b, y);

  ## Restore original shape
  x = reshape (x, orig_sz);

endfunction

function x = newton_method (F, JF, x, a, b, y);

  Bln = betaln (a, b);
  ## Exclude special values that have been already computed.
  todo = find ((y != 0) & (y != 1));
  step = -F (x(todo), a(todo), b(todo), y(todo)) ./ ...
         JF (x(todo), a(todo), b(todo), Bln(todo));
  x_old = x(todo);
  x(todo) += step;
  dx = x(todo) - x_old;
  idx = (dx != 0);
  todo = todo(idx);
  dx_old = dx(idx);
  while (! isempty (todo))
    step = -F (x(todo), a(todo), b(todo), y(todo)) ./ ...
           JF (x(todo), a(todo), b(todo), Bln(todo));
    x_old = x(todo);
    x(todo) += step;
    dx = x(todo) - x_old;
    idx = (abs (dx) < abs (dx_old));  # Converging if dx is getting smaller
    todo = todo(idx);
    dx_old = dx(idx);
  endwhile

endfunction


%!test
%! x = linspace (0.1, 0.9, 11);
%! a = [2, 3, 4];
%! [x,a,b] = ndgrid (x,a,a);
%! xx = betaincinv (betainc (x, a, b), a, b);
%! assert (xx, x, 3e-15);

%!test
%! x = linspace (0.1, 0.9, 11);
%! a = [2, 3, 4];
%! [x,a,b] = ndgrid (x,a,a);
%! xx = betaincinv (betainc (x, a, b, "upper"), a, b, "upper");
%! assert (xx, x, 3e-15);

%!test
%! x = linspace (0.1, 0.9, 11);
%! a = [0.1:0.1:1];
%! [x,a,b] = ndgrid (x,a,a);
%! xx = betaincinv (betainc (x, a, b), a, b);
%! assert (xx, x, 5e-15);

%!test
%! x = linspace (0.1, 0.9, 11);
%! a = [0.1:0.1:1];
%! [x,a,b] = ndgrid (x,a,a);
%! xx = betaincinv (betainc (x, a, b, "upper"), a, b, "upper");
%! assert (xx, x, 5e-15);

## Test the conservation of the input class
%!assert (class (betaincinv (0.5, 1, 1)), "double")
%!assert (class (betaincinv (single (0.5), 1, 1)), "single")
%!assert (class (betaincinv (0.5, single (1), 1)), "single")
%!assert (class (betaincinv (0.5, 1, single (1))), "single")

## Extreme values for y, a, b that really test the algorithm
%!assert (betaincinv ([0, 1], 1, 3), [0, 1])
%!assert <*60528> (betaincinv (1e-6, 1, 3), 3.3333344444450617e-7, 2*eps)
%!assert <*60528> (betaincinv (1-1e-6, 3, 1), 0.9999996666665555, 2*eps)
%!assert (betainc (betaincinv (0.9, 1e-3, 1), 1e-3, 1), 0.9, 2*eps)
%!assert (betainc (betaincinv (.01, 1, 1e-3), 1, 1e-3), .01, 6*eps)
%!assert (betainc (betaincinv (0.5, 100, 1), 100, 1), 0.5, 8*eps)
%!assert (betainc (betaincinv (0.5, 1, 100), 1, 100), 0.5, 22*eps)
%!assert (betaincinv ([0, 1], 1, 3, "upper"), [1, 0])
%!assert <*60528> (betaincinv (1e-6, 1, 3, "upper"), 0.99, 2*eps)
%!assert <*60528> (betaincinv (1-1e-6, 3, 1,"upper"), .01, 250*eps)
%!assert (betainc (betaincinv (0.1, 1e-3, 1, "upper"), 1e-3, 1, "upper"),
%!        0.1, 2*eps)
%!assert (betainc (betaincinv (.99, 1, 1e-3, "upper"), 1, 1e-3, "upper"),
%!        .99, 6*eps)
%!assert (betainc (betaincinv (0.5, 100, 1, "upper"), 100, 1, "upper"),
%!        0.5, 8*eps)
%!assert (betainc (betaincinv (0.5, 1, 100, "upper"), 1, 100, "upper"),
%!        0.5, 22*eps)

## Test input validation
%!error <Invalid call> betaincinv ()
%!error <Invalid call> betaincinv (1)
%!error <Invalid call> betaincinv (1,2)
%!error <must be of common size or scalars>
%! betaincinv (ones (2,2), ones (1,2), 1);
%!error <must be .* floating point> betaincinv ('a', 1, 2)
%!error <must be .* floating point> betaincinv (0, int8 (1), 1)
%!error <must be .* floating point> betaincinv (0, 1, true)
%!error <must be real> betaincinv (0.5i, 1, 2)
%!error <must be real> betaincinv (0, 1i, 1)
%!error <must be real> betaincinv (0, 1, 1i)
%!error <Y must be in the range \[0, 1\]> betaincinv (-0.1,1,1)
%!error <Y must be in the range \[0, 1\]> betaincinv (1.1,1,1)
%!error <Y must be in the range \[0, 1\]>
%! y = ones (1, 1, 2);
%! y(1,1,2) = -1;
%! betaincinv (y,1,1);
%!error <A must be strictly positive> betaincinv (0.5,0,1)
%!error <A must be strictly positive>
%! a = ones (1, 1, 2);
%! a(1,1,2) = 0;
%! betaincinv (1,a,1);
%!error <B must be strictly positive> betaincinv (0.5,1,0)
%!error <B must be strictly positive>
%! b = ones (1, 1, 2);
%! b(1,1,2) = 0;
%! betaincinv (1,1,b);
%!error <invalid value for TAIL> betaincinv (1,2,3, "foobar")