view scripts/specfun/gammaincinv.m @ 30875:5d3faba0342e

doc: Ensure documentation lists output argument when it exists for all m-files. For new users of Octave it is best to show explicit calling forms in the documentation and to show a return argument when it exists. * bp-table.cc, shift.m, accumarray.m, accumdim.m, bincoeff.m, bitcmp.m, bitget.m, bitset.m, blkdiag.m, celldisp.m, cplxpair.m, dblquad.m, flip.m, fliplr.m, flipud.m, idivide.m, int2str.m, interpft.m, logspace.m, num2str.m, polyarea.m, postpad.m, prepad.m, randi.m, repmat.m, rng.m, rot90.m, rotdim.m, structfun.m, triplequad.m, uibuttongroup.m, uicontrol.m, uipanel.m, uipushtool.m, uitoggletool.m, uitoolbar.m, waitforbuttonpress.m, help.m, __additional_help_message__.m, hsv.m, im2double.m, im2frame.m, javachk.m, usejava.m, argnames.m, char.m, formula.m, inline.m, __vectorize__.m, findstr.m, flipdim.m, strmatch.m, vectorize.m, commutation_matrix.m, cond.m, cross.m, duplication_matrix.m, expm.m, orth.m, rank.m, rref.m, trace.m, vech.m, cast.m, compare_versions.m, delete.m, dir.m, fileattrib.m, grabcode.m, gunzip.m, inputname.m, license.m, list_primes.m, ls.m, mexext.m, movefile.m, namelengthmax.m, nargoutchk.m, nthargout.m, substruct.m, swapbytes.m, ver.m, verLessThan.m, what.m, fminunc.m, fsolve.m, fzero.m, optimget.m, __fdjac__.m, matlabroot.m, savepath.m, campos.m, camroll.m, camtarget.m, camup.m, camva.m, camzoom.m, clabel.m, diffuse.m, legend.m, orient.m, rticks.m, specular.m, thetaticks.m, xlim.m, xtickangle.m, xticklabels.m, xticks.m, ylim.m, ytickangle.m, yticklabels.m, yticks.m, zlim.m, ztickangle.m, zticklabels.m, zticks.m, ellipsoid.m, isocolors.m, isonormals.m, stairs.m, surfnorm.m, __actual_axis_position__.m, __pltopt__.m, close.m, graphics_toolkit.m, pan.m, print.m, printd.m, __ghostscript__.m, __gnuplot_print__.m, __opengl_print__.m, rotate3d.m, subplot.m, zoom.m, compan.m, conv.m, poly.m, polyaffine.m, polyder.m, polyint.m, polyout.m, polyreduce.m, polyvalm.m, roots.m, prefdir.m, prefsfile.m, profexplore.m, profexport.m, profshow.m, powerset.m, unique.m, arch_rnd.m, arma_rnd.m, autoreg_matrix.m, bartlett.m, blackman.m, detrend.m, durbinlevinson.m, fftconv.m, fftfilt.m, fftshift.m, fractdiff.m, hamming.m, hanning.m, hurst.m, ifftshift.m, rectangle_lw.m, rectangle_sw.m, triangle_lw.m, sinc.m, sinetone.m, sinewave.m, spectral_adf.m, spectral_xdf.m, spencer.m, ilu.m, __sprand__.m, sprand.m, sprandn.m, sprandsym.m, treelayout.m, beta.m, betainc.m, betaincinv.m, betaln.m, cosint.m, expint.m, factorial.m, gammainc.m, gammaincinv.m, lcm.m, nthroot.m, perms.m, reallog.m, realpow.m, realsqrt.m, sinint.m, hadamard.m, hankel.m, hilb.m, invhilb.m, magic.m, pascal.m, rosser.m, toeplitz.m, vander.m, wilkinson.m, center.m, corr.m, cov.m, discrete_cdf.m, discrete_inv.m, discrete_pdf.m, discrete_rnd.m, empirical_cdf.m, empirical_inv.m, empirical_pdf.m, empirical_rnd.m, kendall.m, kurtosis.m, mad.m, mean.m, meansq.m, median.m, mode.m, moment.m, range.m, ranks.m, run_count.m, skewness.m, spearman.m, statistics.m, std.m, base2dec.m, bin2dec.m, blanks.m, cstrcat.m, deblank.m, dec2base.m, dec2bin.m, dec2hex.m, hex2dec.m, index.m, regexptranslate.m, rindex.m, strcat.m, strjust.m, strtrim.m, strtrunc.m, substr.m, untabify.m, __have_feature__.m, __prog_output_assert__.m, __run_test_suite__.m, example.m, fail.m, asctime.m, calendar.m, ctime.m, date.m, etime.m: Add return arguments to @deftypefn macros where they were missing. Rename variables in functions (particularly generic "retval") to match documentation. Rename some return variables for (hopefully) better clarity (e.g., 'ax' to 'hax' to indicate it is a graphics handle to an axes object).
author Rik <rik@octave.org>
date Wed, 30 Mar 2022 20:40:27 -0700
parents 796f54d4ddbf
children c8ad083a5802
line wrap: on
line source

########################################################################
##
## Copyright (C) 2017-2022 The Octave Project Developers
##
## See the file COPYRIGHT.md in the top-level directory of this
## distribution or <https://octave.org/copyright/>.
##
## This file is part of Octave.
##
## Octave is free software: you can redistribute it and/or modify it
## under the terms of the GNU General Public License as published by
## the Free Software Foundation, either version 3 of the License, or
## (at your option) any later version.
##
## Octave is distributed in the hope that it will be useful, but
## WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
## GNU General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with Octave; see the file COPYING.  If not, see
## <https://www.gnu.org/licenses/>.
##
########################################################################

## -*- texinfo -*-
## @deftypefn  {} {@var{x} =} gammaincinv (@var{y}, @var{a})
## @deftypefnx {} {@var{x} =} gammaincinv (@var{y}, @var{a}, @var{tail})
## Compute the inverse of the normalized incomplete gamma function.
##
## The normalized incomplete gamma function is defined as
## @tex
## $$
##  \gamma (x, a) = {1 \over {\Gamma (a)}}\displaystyle{\int_0^x t^{a-1} e^{-t} dt}
## $$
## @end tex
## @ifnottex
##
## @example
## @group
##                                 x
##                        1       /
## gammainc (x, a) = ---------    | exp (-t) t^(a-1) dt
##                   gamma (a)    /
##                             t=0
## @end group
## @end example
##
## @end ifnottex
##
## and @code{gammaincinv (gammainc (@var{x}, @var{a}), @var{a}) = @var{x}}
## for each non-negative value of @var{x}.  If @var{a} is scalar then
## @code{gammaincinv (@var{y}, @var{a})} is returned for each element of
## @var{y} and vice versa.
##
## If neither @var{y} nor @var{a} is scalar then the sizes of @var{y} and
## @var{a} must agree, and @code{gammaincinv} is applied element-by-element.
## The variable @var{y} must be in the interval @math{[0,1]} while @var{a} must
## be real and positive.
##
## By default, @var{tail} is @qcode{"lower"} and the inverse of the incomplete
## gamma function integrated from 0 to @var{x} is computed.  If @var{tail} is
## @qcode{"upper"}, then the complementary function integrated from @var{x} to
## infinity is inverted.
##
## The function is computed with Newton's method by solving
## @tex
## $$
##  y - \gamma (x, a) = 0
## $$
## @end tex
## @ifnottex
##
## @example
## @var{y} - gammainc (@var{x}, @var{a}) = 0
## @end example
##
## @end ifnottex
##
## Reference: @nospell{A. Gil, J. Segura, and N. M. Temme}, @cite{Efficient and
## accurate algorithms for the computation and inversion of the incomplete
## gamma function ratios}, @nospell{SIAM J. Sci.@: Computing}, pp.@:
## A2965--A2981, Vol 34, 2012.
##
## @seealso{gammainc, gamma, gammaln}
## @end deftypefn

function x = gammaincinv (y, a, tail = "lower")

  if (nargin < 2)
    print_usage ();
  endif

  [err, y, a] = common_size (y, a);
  if (err > 0)
    error ("gammaincinv: Y and A must be of common size or scalars");
  endif

  if (iscomplex (y) || iscomplex (a))
    error ("gammaincinv: all inputs must be real");
  endif

  ## Remember original shape of data, but convert to column vector for calcs.
  orig_sz = size (y);
  y = y(:);
  a = a(:);

  if (any ((y < 0) | (y > 1)))
    error ("gammaincinv: Y must be in the range [0, 1]");
  endif

  if (any (a <= 0))
    error ("gammaincinv: A must be strictly positive");
  endif

  ## If any of the arguments is single then the output should be as well.
  if (strcmp (class (y), "single") || strcmp (class (a), "single"))
    y = single (y);
    a = single (a);
  endif

  ## Convert to floating point if necessary
  if (isinteger (y))
    y = double (y);
  endif
  if (isinteger (a))
    a = double (a);
  endif

  ## Initialize output array
  x = zeros (size (y), class (y));

  maxit = 20;
  tol = eps (class (y));

  ## Special cases, a = 1 or y = 0, 1.

  if (strcmpi (tail, "lower"))
    x(a == 1) = - log1p (- y(a == 1));
    x(y == 0) = 0;
    x(y == 1) = Inf;
    p = y;
    q = 1 - p;
  elseif (strcmpi (tail, "upper"))
    x(a == 1) = - log (y(a == 1));
    x(y == 0) = Inf;
    x(y == 1) = 0;
    q = y;
    p = 1 - q;
  else
    error ("gammaincinv: invalid value for TAIL");
  endif

  todo = (a != 1) & (y != 0) & (y != 1);

  ## Case 1: p small.

  i_flag_1 = todo & (p < ((0.2 * (1 + a)) .^ a) ./ gamma (1 + a));

  if (any (i_flag_1))
    aa = a(i_flag_1);
    pp = p(i_flag_1);

    ## Initial guess.

    r = (pp .* gamma (1 + aa)) .^ (1 ./ aa);

    c2 = 1 ./ (aa + 1);
    c3 = (3  * aa + 5) ./ (2 * (aa + 1) .^2 .* (aa + 2));
    c4 = (8 * aa .^ 2 + 33 * aa + 31) ./ (3 * (aa + 1) .^ 3 .* (aa + 2) .* ...
         (aa + 3));
    c5 = (125 * aa .^ 4 + 1179 * aa .^ 3 + 3971 * aa.^2 + 5661 * aa + 2888) ...
         ./ (24 * (1 + aa) .^4 .* (aa + 2) .^ 2 .* (aa + 3) .* (aa + 4));

    ## FIXME: Would polyval() be better here for more accuracy?
    x0 = r + c2 .* r .^ 2 + c3 .* r .^ 3 + c4 .* r .^4 + c5 .* r .^ 5;

    ## For this case we invert the lower version.

    F = @(p, a, x) p - gammainc (x, a, "lower");
    JF = @(a, x) - exp (- gammaln (a) - x + (a - 1) .* log (x));
    x(i_flag_1) = newton_method (F, JF, pp, aa, x0, tol, maxit);
  endif

  todo(i_flag_1) = false;

  ## Case 2: q small.

  i_flag_2 = (q < exp (- 0.5 * a) ./ gamma (1 + a)) & (a > 0) & (a < 10);
  i_flag_2 &= todo;

  if (any (i_flag_2))
    aa = a(i_flag_2);
    qq = q(i_flag_2);

    ## Initial guess.

    x0 = (-log (qq) - gammaln (aa));

    ## For this case, we invert the upper version.

    F = @(q, a, x) q - gammainc (x, a, "upper");
    JF = @(a, x) exp (- gammaln (a) - x) .* x .^ (a - 1);
    x(i_flag_2) = newton_method (F, JF, qq, aa, x0, tol, maxit);
  endif

  todo(i_flag_2) = false;

  ## Case 3: a small.

  i_flag_3 = todo & ((a > 0) & (a < 1));

  if (any (i_flag_3))
    aa = a(i_flag_3);
    pp = p(i_flag_3);

    ## Initial guess

    xl = (pp .* gamma (aa + 1)) .^ (1 ./ aa);
    x0 = xl;

    ## For this case, we invert the lower version.

    F = @(p, a, x) p - gammainc (x, a, "lower");
    JF = @(a, x) - exp (-gammaln (a) - x) .* x .^ (a - 1);
    x(i_flag_3) = newton_method (F, JF, pp, aa, x0, tol, maxit);
  endif

  todo(i_flag_3) = false;

  ## Case 4: a large.

  i_flag_4 = todo;

  if (any (i_flag_4))
    aa = a(i_flag_4);
    qq = q(i_flag_4);

    ## Initial guess

    d = 1 ./ (9 * aa);
    t = 1 - d + sqrt (2) * erfcinv (2 * qq) .* sqrt (d);
    x0 = aa .* (t .^ 3);

    ## For this case, we invert the upper version.

    F = @(q, a, x) q - gammainc (x, a, "upper");
    JF = @(a, x) exp (- gammaln (a) - x + (a - 1) .* log (x));
    x(i_flag_4) = newton_method (F, JF, qq, aa, x0, tol, maxit);
  endif

  ## Restore original shape
  x = reshape (x, orig_sz);

endfunction

## subfunction: Newton's Method
function x = newton_method (F, JF, y, a, x0, tol, maxit);

  l = numel (y);
  res = -F (y, a, x0) ./ JF (a, x0);
  todo = (abs (res) >= tol * abs (x0));
  x = x0;
  it = 0;
  while (any (todo) && (it++ < maxit))
    x(todo) += res(todo);
    res(todo) = -F (y(todo), a(todo), x(todo)) ./ JF (a(todo), x(todo));
    todo = (abs (res) >= tol * abs (x));
  endwhile
  x += res;

endfunction


%!test
%! x = [1e-10, 1e-09, 1e-08, 1e-07];
%! a = [2, 3, 4];
%! [x, a] = ndgrid (x, a);
%! xx = gammainc (gammaincinv (x, a), a);
%! assert (xx, x, -3e-14);

%!test
%! x = [1e-10, 1e-09, 1e-08, 1e-07];
%! a = [2, 3, 4];
%! [x, a] = ndgrid (x, a);
%! xx = gammainc (gammaincinv (x, a, "upper"), a, "upper");
%! assert (xx, x, -3e-14);

%!test
%! x = linspace (0, 1)';
%! a = [linspace(0.1, 1, 10), 2:5];
%! [x, a] = ndgrid (x, a);
%! xx = gammainc (gammaincinv (x, a), a);
%! assert (xx, x, -1e-13);

%!test
%! x = linspace (0, 1)';
%! a = [linspace(0.1, 1, 10), 2:5];
%! [x, a] = ndgrid (x, a);
%! xx = gammainc (gammaincinv (x, a, "upper"), a, "upper");
%! assert (xx, x, -1e-13);

%!test <*56453>
%! assert (gammaincinv (1e-15, 1) * 2, 2e-15, -1e-15);
%! assert (gammaincinv (1e-16, 1) * 2, 2e-16, -1e-15);

## Test the conservation of the input class
%!assert (class (gammaincinv (0.5, 1)), "double")
%!assert (class (gammaincinv (single (0.5), 1)), "single")
%!assert (class (gammaincinv (0.5, single (1))), "single")
%!assert (class (gammaincinv (int8 (0), 1)), "double")
%!assert (class (gammaincinv (0.5, int8 (1))), "double")
%!assert (class (gammaincinv (int8 (0), single (1))), "single")
%!assert (class (gammaincinv (single (0.5), int8 (1))), "single")

## Test input validation
%!error <Invalid call> gammaincinv ()
%!error <Invalid call> gammaincinv (1)
%!error <must be of common size or scalars>
%! gammaincinv (ones (2,2), ones (1,2), 1);
%!error <all inputs must be real> gammaincinv (0.5i, 1)
%!error <all inputs must be real> gammaincinv (0, 1i)
%!error <Y must be in the range \[0, 1\]> gammaincinv (-0.1,1)
%!error <Y must be in the range \[0, 1\]> gammaincinv (1.1,1)
%!error <Y must be in the range \[0, 1\]>
%! y = ones (1, 1, 2);
%! y(1,1,2) = -1;
%! gammaincinv (y,1);
%!error <A must be strictly positive> gammaincinv (0.5, 0)
%!error <A must be strictly positive>
%! a = ones (1, 1, 2);
%! a(1,1,2) = 0;
%! gammaincinv (1,a,1);
%!error <invalid value for TAIL> gammaincinv (1,2, "foobar")