view libinterp/octave-value/ov-flt-cx-mat.cc @ 21231:5f318c8ec634

eliminate feature tests from lo-specfun.h * lo-specfun.h, lo-specfun.cc (xacosh, xasinh, xatanh, xerf, xerfc xexpm1, xlog1p, xcbrt): Rename to have 'x' prefix. Conditionally define in .cc file. Change all uses Move complex versions of acosh, asinh, and atanh functions here.
author John W. Eaton <jwe@octave.org>
date Tue, 09 Feb 2016 04:15:50 -0500
parents 2cf8bc5c7017
children 40de9f8f23a6
line wrap: on
line source

/*

Copyright (C) 1996-2015 John W. Eaton
Copyright (C) 2009-2010 VZLU Prague

This file is part of Octave.

Octave is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation; either version 3 of the License, or (at your
option) any later version.

Octave is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
for more details.

You should have received a copy of the GNU General Public License
along with Octave; see the file COPYING.  If not, see
<http://www.gnu.org/licenses/>.

*/

#ifdef HAVE_CONFIG_H
#  include <config.h>
#endif

#include <iostream>
#include <vector>

#include "data-conv.h"
#include "lo-ieee.h"
#include "lo-specfun.h"
#include "lo-mappers.h"
#include "mx-base.h"
#include "mach-info.h"
#include "oct-locbuf.h"

#include "errwarn.h"
#include "mxarray.h"
#include "ovl.h"
#include "oct-hdf5.h"
#include "oct-stream.h"
#include "ops.h"
#include "ov-base.h"
#include "ov-base-mat.h"
#include "ov-base-mat.cc"
#include "ov-complex.h"
#include "ov-flt-complex.h"
#include "ov-cx-mat.h"
#include "ov-flt-cx-mat.h"
#include "ov-re-mat.h"
#include "ov-flt-re-mat.h"
#include "ov-scalar.h"
#include "ov-float.h"
#include "pr-output.h"
#include "ops.h"

#include "byte-swap.h"
#include "ls-oct-text.h"
#include "ls-hdf5.h"
#include "ls-utils.h"

template class octave_base_matrix<FloatComplexNDArray>;


DEFINE_OV_TYPEID_FUNCTIONS_AND_DATA (octave_float_complex_matrix,
                                     "float complex matrix", "single");

octave_base_value *
octave_float_complex_matrix::try_narrowing_conversion (void)
{
  octave_base_value *retval = 0;

  if (matrix.numel () == 1)
    {
      FloatComplex c = matrix (0);

      if (std::imag (c) == 0.0)
        retval = new octave_float_scalar (std::real (c));
      else
        retval = new octave_float_complex (c);
    }
  else if (matrix.all_elements_are_real ())
    retval = new octave_float_matrix (::real (matrix));

  return retval;
}

double
octave_float_complex_matrix::double_value (bool force_conversion) const
{
  double retval = lo_ieee_nan_value ();

  if (! force_conversion)
    warn_implicit_conversion ("Octave:imag-to-real",
                              "complex matrix", "real scalar");

  if (rows () == 0 || columns () == 0)
    err_invalid_conversion ("complex matrix", "real scalar");

  warn_implicit_conversion ("Octave:array-to-scalar",
                            "complex matrix", "real scalar");

  retval = std::real (matrix(0, 0));

  return retval;
}

float
octave_float_complex_matrix::float_value (bool force_conversion) const
{
  float retval = lo_ieee_float_nan_value ();

  if (! force_conversion)
    warn_implicit_conversion ("Octave:imag-to-real",
                              "complex matrix", "real scalar");

  if (rows () == 0 || columns () == 0)
    err_invalid_conversion ("complex matrix", "real scalar");

  warn_implicit_conversion ("Octave:array-to-scalar",
                            "complex matrix", "real scalar");

  retval = std::real (matrix(0, 0));

  return retval;
}

Matrix
octave_float_complex_matrix::matrix_value (bool force_conversion) const
{
  Matrix retval;

  if (! force_conversion)
    warn_implicit_conversion ("Octave:imag-to-real",
                              "complex matrix", "real matrix");

  retval = ::real (FloatComplexMatrix (matrix));

  return retval;
}

FloatMatrix
octave_float_complex_matrix::float_matrix_value (bool force_conversion) const
{
  FloatMatrix retval;

  if (! force_conversion)
    warn_implicit_conversion ("Octave:imag-to-real",
                              "complex matrix", "real matrix");

  retval = ::real (FloatComplexMatrix (matrix));

  return retval;
}

Complex
octave_float_complex_matrix::complex_value (bool) const
{
  double tmp = lo_ieee_nan_value ();

  Complex retval (tmp, tmp);

  if (rows () == 0 || columns () == 0)
    err_invalid_conversion ("complex matrix", "complex scalar");

  warn_implicit_conversion ("Octave:array-to-scalar",
                            "complex matrix", "complex scalar");

  retval = matrix(0, 0);

  return retval;
}

FloatComplex
octave_float_complex_matrix::float_complex_value (bool) const
{
  float tmp = lo_ieee_float_nan_value ();

  FloatComplex retval (tmp, tmp);

  if (rows () == 0 || columns () == 0)
    err_invalid_conversion ("complex matrix", "complex scalar");

  warn_implicit_conversion ("Octave:array-to-scalar",
                            "complex matrix", "complex scalar");

  retval = matrix(0, 0);

  return retval;
}

ComplexMatrix
octave_float_complex_matrix::complex_matrix_value (bool) const
{
  return FloatComplexMatrix (matrix);
}

FloatComplexMatrix
octave_float_complex_matrix::float_complex_matrix_value (bool) const
{
  return FloatComplexMatrix (matrix);
}

boolNDArray
octave_float_complex_matrix::bool_array_value (bool warn) const
{
  if (matrix.any_element_is_nan ())
    err_nan_to_logical_conversion ();
  if (warn && (! matrix.all_elements_are_real ()
               || real (matrix).any_element_not_one_or_zero ()))
    warn_logical_conversion ();

  return mx_el_ne (matrix, FloatComplex (0.0));
}

charNDArray
octave_float_complex_matrix::char_array_value (bool frc_str_conv) const
{
  charNDArray retval;

  if (! frc_str_conv)
    warn_implicit_conversion ("Octave:num-to-str",
                              "complex matrix", "string");
  else
    {
      retval = charNDArray (dims ());
      octave_idx_type nel = numel ();

      for (octave_idx_type i = 0; i < nel; i++)
        retval.elem (i) = static_cast<char>(std::real (matrix.elem (i)));
    }

  return retval;
}

FloatComplexNDArray
octave_float_complex_matrix::float_complex_array_value (bool) const
{
  return FloatComplexNDArray (matrix);
}

SparseMatrix
octave_float_complex_matrix::sparse_matrix_value (bool force_conversion) const
{
  SparseMatrix retval;

  if (! force_conversion)
    warn_implicit_conversion ("Octave:imag-to-real",
                              "complex matrix", "real matrix");

  retval = SparseMatrix (::real (complex_matrix_value ()));

  return retval;
}

SparseComplexMatrix
octave_float_complex_matrix::sparse_complex_matrix_value (bool) const
{
  return SparseComplexMatrix (complex_matrix_value ());
}

octave_value
octave_float_complex_matrix::diag (octave_idx_type k) const
{
  octave_value retval;
  if (k == 0 && matrix.ndims () == 2
      && (matrix.rows () == 1 || matrix.columns () == 1))
    retval = FloatComplexDiagMatrix (DiagArray2<FloatComplex> (matrix));
  else
    retval = octave_base_matrix<FloatComplexNDArray>::diag (k);

  return retval;
}

octave_value
octave_float_complex_matrix::diag (octave_idx_type m, octave_idx_type n) const
{
  if (matrix.ndims () != 2
      || (matrix.rows () != 1 && matrix.columns () != 1))
    error ("diag: expecting vector argument");

  FloatComplexMatrix mat (matrix);

  return mat.diag (m, n);
}

bool
octave_float_complex_matrix::save_ascii (std::ostream& os)
{
  dim_vector d = dims ();
  if (d.length () > 2)
    {
      FloatComplexNDArray tmp = complex_array_value ();

      os << "# ndims: " << d.length () << "\n";

      for (int i = 0; i < d.length (); i++)
        os << " " << d(i);

      os << "\n" << tmp;
    }
  else
    {
      // Keep this case, rather than use generic code above for backward
      // compatibility.  Makes load_ascii much more complex!!
      os << "# rows: " << rows () << "\n"
         << "# columns: " << columns () << "\n";

      os << complex_matrix_value ();
    }

  return true;
}

bool
octave_float_complex_matrix::load_ascii (std::istream& is)
{
  string_vector keywords(2);

  keywords[0] = "ndims";
  keywords[1] = "rows";

  std::string kw;
  octave_idx_type val = 0;

  if (! extract_keyword (is, keywords, kw, val, true))
    error ("load: failed to extract number of rows and columns");

  if (kw == "ndims")
    {
      int mdims = static_cast<int> (val);

      if (mdims < 0)
        error ("load: failed to extract number of dimensions");

      dim_vector dv;
      dv.resize (mdims);

      for (int i = 0; i < mdims; i++)
        is >> dv(i);

      if (! is)
        error ("load: failed to read dimensions");

      FloatComplexNDArray tmp(dv);

      is >> tmp;

      if (! is)
        error ("load: failed to load matrix constant");

      matrix = tmp;
    }
  else if (kw == "rows")
    {
      octave_idx_type nr = val;
      octave_idx_type nc = 0;

      if (nr < 0 || ! extract_keyword (is, "columns", nc) || nc < 0)
        error ("load: failed to extract number of rows and columns");

      if (nr > 0 && nc > 0)
        {
          FloatComplexMatrix tmp (nr, nc);
          is >> tmp;
          if (! is)
            error ("load: failed to load matrix constant");

          matrix = tmp;
        }
      else if (nr == 0 || nc == 0)
        matrix = FloatComplexMatrix (nr, nc);
      else
        panic_impossible ();
    }
  else
    panic_impossible ();

  return true;
}

bool
octave_float_complex_matrix::save_binary (std::ostream& os, bool&)
{
  dim_vector d = dims ();
  if (d.length () < 1)
    return false;

  // Use negative value for ndims to differentiate with old format!!
  int32_t tmp = - d.length ();
  os.write (reinterpret_cast<char *> (&tmp), 4);
  for (int i = 0; i < d.length (); i++)
    {
      tmp = d(i);
      os.write (reinterpret_cast<char *> (&tmp), 4);
    }

  FloatComplexNDArray m = complex_array_value ();
  save_type st = LS_FLOAT;
  if (d.numel () > 4096) // FIXME: make this configurable.
    {
      float max_val, min_val;
      if (m.all_integers (max_val, min_val))
        st = get_save_type (max_val, min_val);
    }

  const FloatComplex *mtmp = m.data ();
  write_floats (os, reinterpret_cast<const float *> (mtmp), st, 2 * d.numel ());

  return true;
}

bool
octave_float_complex_matrix::load_binary (std::istream& is, bool swap,
                                          oct_mach_info::float_format fmt)
{
  char tmp;
  int32_t mdims;
  if (! is.read (reinterpret_cast<char *> (&mdims), 4))
    return false;
  if (swap)
    swap_bytes<4> (&mdims);
  if (mdims < 0)
    {
      mdims = - mdims;
      int32_t di;
      dim_vector dv;
      dv.resize (mdims);

      for (int i = 0; i < mdims; i++)
        {
          if (! is.read (reinterpret_cast<char *> (&di), 4))
            return false;
          if (swap)
            swap_bytes<4> (&di);
          dv(i) = di;
        }

      // Convert an array with a single dimension to be a row vector.
      // Octave should never write files like this, other software
      // might.

      if (mdims == 1)
        {
          mdims = 2;
          dv.resize (mdims);
          dv(1) = dv(0);
          dv(0) = 1;
        }

      if (! is.read (reinterpret_cast<char *> (&tmp), 1))
        return false;

      FloatComplexNDArray m(dv);
      FloatComplex *im = m.fortran_vec ();
      read_floats (is, reinterpret_cast<float *> (im),
                   static_cast<save_type> (tmp), 2 * dv.numel (), swap, fmt);

      if (! is)
        return false;

      matrix = m;
    }
  else
    {
      int32_t nr, nc;
      nr = mdims;
      if (! is.read (reinterpret_cast<char *> (&nc), 4))
        return false;
      if (swap)
        swap_bytes<4> (&nc);
      if (! is.read (reinterpret_cast<char *> (&tmp), 1))
        return false;
      FloatComplexMatrix m (nr, nc);
      FloatComplex *im = m.fortran_vec ();
      octave_idx_type len = nr * nc;
      read_floats (is, reinterpret_cast<float *> (im),
                   static_cast<save_type> (tmp), 2*len, swap, fmt);

      if (! is)
        return false;

      matrix = m;
    }
  return true;
}

bool
octave_float_complex_matrix::save_hdf5 (octave_hdf5_id loc_id, const char *name, bool)
{
  bool retval = false;

#if defined (HAVE_HDF5)

  dim_vector dv = dims ();
  int empty = save_hdf5_empty (loc_id, name, dv);
  if (empty)
    return (empty > 0);

  int rank = dv.length ();
  hid_t space_hid, data_hid, type_hid;
  space_hid = data_hid = type_hid = -1;
  FloatComplexNDArray m = complex_array_value ();

  OCTAVE_LOCAL_BUFFER (hsize_t, hdims, rank);

  // Octave uses column-major, while HDF5 uses row-major ordering
  for (int i = 0; i < rank; i++)
    hdims[i] = dv(rank-i-1);

  space_hid = H5Screate_simple (rank, hdims, 0);
  if (space_hid < 0) return false;

  hid_t save_type_hid = H5T_NATIVE_FLOAT;

#if defined (HAVE_HDF5_INT2FLOAT_CONVERSIONS)
  // hdf5 currently doesn't support float/integer conversions
  else
    {
      float max_val, min_val;

      if (m.all_integers (max_val, min_val))
        save_type_hid
          = save_type_to_hdf5 (get_save_type (max_val, min_val));
    }
#endif

  type_hid = hdf5_make_complex_type (save_type_hid);
  if (type_hid < 0)
    {
      H5Sclose (space_hid);
      return false;
    }
#if defined (HAVE_HDF5_18)
  data_hid = H5Dcreate (loc_id, name, type_hid, space_hid,
                        octave_H5P_DEFAULT, octave_H5P_DEFAULT, octave_H5P_DEFAULT);
#else
  data_hid = H5Dcreate (loc_id, name, type_hid, space_hid, octave_H5P_DEFAULT);
#endif
  if (data_hid < 0)
    {
      H5Sclose (space_hid);
      H5Tclose (type_hid);
      return false;
    }

  hid_t complex_type_hid = hdf5_make_complex_type (H5T_NATIVE_FLOAT);
  if (complex_type_hid < 0) retval = false;

  if (retval)
    {
      FloatComplex *mtmp = m.fortran_vec ();
      if (H5Dwrite (data_hid, complex_type_hid, octave_H5S_ALL, octave_H5S_ALL, octave_H5P_DEFAULT,
                    mtmp) < 0)
        {
          H5Tclose (complex_type_hid);
          retval = false;
        }
    }

  H5Tclose (complex_type_hid);
  H5Dclose (data_hid);
  H5Tclose (type_hid);
  H5Sclose (space_hid);

#else
  warn_save ("hdf5");
#endif

  return retval;
}

bool
octave_float_complex_matrix::load_hdf5 (octave_hdf5_id loc_id, const char *name)
{
  bool retval = false;

#if defined (HAVE_HDF5)

  dim_vector dv;
  int empty = load_hdf5_empty (loc_id, name, dv);
  if (empty > 0)
    matrix.resize (dv);
  if (empty)
    return (empty > 0);

#if defined (HAVE_HDF5_18)
  hid_t data_hid = H5Dopen (loc_id, name, octave_H5P_DEFAULT);
#else
  hid_t data_hid = H5Dopen (loc_id, name);
#endif
  hid_t type_hid = H5Dget_type (data_hid);

  hid_t complex_type = hdf5_make_complex_type (H5T_NATIVE_FLOAT);

  if (! hdf5_types_compatible (type_hid, complex_type))
    {
      H5Tclose (complex_type);
      H5Dclose (data_hid);
      return false;
    }

  hid_t space_id = H5Dget_space (data_hid);

  hsize_t rank = H5Sget_simple_extent_ndims (space_id);

  if (rank < 1)
    {
      H5Tclose (complex_type);
      H5Sclose (space_id);
      H5Dclose (data_hid);
      return false;
    }

  OCTAVE_LOCAL_BUFFER (hsize_t, hdims, rank);
  OCTAVE_LOCAL_BUFFER (hsize_t, maxdims, rank);

  H5Sget_simple_extent_dims (space_id, hdims, maxdims);

  // Octave uses column-major, while HDF5 uses row-major ordering
  if (rank == 1)
    {
      dv.resize (2);
      dv(0) = 1;
      dv(1) = hdims[0];
    }
  else
    {
      dv.resize (rank);
      for (hsize_t i = 0, j = rank - 1; i < rank; i++, j--)
        dv(j) = hdims[i];
    }

  FloatComplexNDArray m (dv);
  FloatComplex *reim = m.fortran_vec ();
  if (H5Dread (data_hid, complex_type, octave_H5S_ALL, octave_H5S_ALL, octave_H5P_DEFAULT,
               reim) >= 0)
    {
      retval = true;
      matrix = m;
    }

  H5Tclose (complex_type);
  H5Sclose (space_id);
  H5Dclose (data_hid);

#else
  warn_load ("hdf5");
#endif

  return retval;
}

void
octave_float_complex_matrix::print_raw (std::ostream& os,
                                        bool pr_as_read_syntax) const
{
  octave_print_internal (os, matrix, pr_as_read_syntax,
                         current_print_indent_level ());
}

mxArray *
octave_float_complex_matrix::as_mxArray (void) const
{
  mxArray *retval = new mxArray (mxSINGLE_CLASS, dims (), mxCOMPLEX);

  float *pr = static_cast<float *> (retval->get_data ());
  float *pi = static_cast<float *> (retval->get_imag_data ());

  mwSize nel = numel ();

  const FloatComplex *p = matrix.data ();

  for (mwIndex i = 0; i < nel; i++)
    {
      pr[i] = std::real (p[i]);
      pi[i] = std::imag (p[i]);
    }

  return retval;
}

octave_value
octave_float_complex_matrix::map (unary_mapper_t umap) const
{
  switch (umap)
    {
    // Mappers handled specially.
    case umap_real:
      return ::real (matrix);
    case umap_imag:
      return ::imag (matrix);
    case umap_conj:
      return ::conj (matrix);

#define ARRAY_METHOD_MAPPER(UMAP, FCN) \
    case umap_ ## UMAP: \
      return octave_value (matrix.FCN ())

      ARRAY_METHOD_MAPPER (abs, abs);
      ARRAY_METHOD_MAPPER (isnan, isnan);
      ARRAY_METHOD_MAPPER (isinf, isinf);
      ARRAY_METHOD_MAPPER (isfinite, isfinite);

#define ARRAY_MAPPER(UMAP, TYPE, FCN) \
    case umap_ ## UMAP: \
      return octave_value (matrix.map<TYPE> (FCN))

      ARRAY_MAPPER (acos, FloatComplex, ::acos);
      ARRAY_MAPPER (acosh, FloatComplex, xacosh);
      ARRAY_MAPPER (angle, float, std::arg);
      ARRAY_MAPPER (arg, float, std::arg);
      ARRAY_MAPPER (asin, FloatComplex, ::asin);
      ARRAY_MAPPER (asinh, FloatComplex, xasinh);
      ARRAY_MAPPER (atan, FloatComplex, ::atan);
      ARRAY_MAPPER (atanh, FloatComplex, xatanh);
      ARRAY_MAPPER (erf, FloatComplex, xerf);
      ARRAY_MAPPER (erfc, FloatComplex, xerfc);
      ARRAY_MAPPER (erfcx, FloatComplex, ::erfcx);
      ARRAY_MAPPER (erfi, FloatComplex, ::erfi);
      ARRAY_MAPPER (dawson, FloatComplex, ::dawson);
      ARRAY_MAPPER (ceil, FloatComplex, ::ceil);
      ARRAY_MAPPER (cos, FloatComplex, std::cos);
      ARRAY_MAPPER (cosh, FloatComplex, std::cosh);
      ARRAY_MAPPER (exp, FloatComplex, std::exp);
      ARRAY_MAPPER (expm1, FloatComplex, xexpm1);
      ARRAY_MAPPER (fix, FloatComplex, ::fix);
      ARRAY_MAPPER (floor, FloatComplex, ::floor);
      ARRAY_MAPPER (log, FloatComplex, std::log);
      ARRAY_MAPPER (log2, FloatComplex, xlog2);
      ARRAY_MAPPER (log10, FloatComplex, std::log10);
      ARRAY_MAPPER (log1p, FloatComplex, xlog1p);
      ARRAY_MAPPER (round, FloatComplex, xround);
      ARRAY_MAPPER (roundb, FloatComplex, xroundb);
      ARRAY_MAPPER (signum, FloatComplex, ::signum);
      ARRAY_MAPPER (sin, FloatComplex, std::sin);
      ARRAY_MAPPER (sinh, FloatComplex, std::sinh);
      ARRAY_MAPPER (sqrt, FloatComplex, std::sqrt);
      ARRAY_MAPPER (tan, FloatComplex, std::tan);
      ARRAY_MAPPER (tanh, FloatComplex, std::tanh);
      ARRAY_MAPPER (isna, bool, octave_is_NA);

    default:
      return octave_base_value::map (umap);
    }
}