view libinterp/octave-value/ov-cx-diag.cc @ 30135:606652e9f446

maint: use "m_" prefix for member variables in class octave_base_diag. * ov-base-diag.cc, ov-base-diag.h, ov-cx-diag.cc, ov-flt-cx-diag.cc, ov-flt-re-diag.cc, ov-re-diag.cc: Use "m_" prefix for member variables in class octave_base_diag.
author Rik <rik@octave.org>
date Tue, 07 Sep 2021 16:07:34 -0700
parents 75dff8f2de2e
children 2dca5c25237d
line wrap: on
line source

////////////////////////////////////////////////////////////////////////
//
// Copyright (C) 2008-2021 The Octave Project Developers
//
// See the file COPYRIGHT.md in the top-level directory of this
// distribution or <https://octave.org/copyright/>.
//
// This file is part of Octave.
//
// Octave is free software: you can redistribute it and/or modify it
// under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// Octave is distributed in the hope that it will be useful, but
// WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with Octave; see the file COPYING.  If not, see
// <https://www.gnu.org/licenses/>.
//
////////////////////////////////////////////////////////////////////////

#if defined (HAVE_CONFIG_H)
#  include "config.h"
#endif

#include "byte-swap.h"

#include "ov-cx-diag.h"
#include "ov-flt-cx-diag.h"
#include "ov-re-diag.h"
#include "ov-base-diag.cc"
#include "ov-complex.h"
#include "ov-cx-mat.h"
#include "ls-utils.h"


template class octave_base_diag<ComplexDiagMatrix, ComplexMatrix>;

DEFINE_OV_TYPEID_FUNCTIONS_AND_DATA (octave_complex_diag_matrix,
                                     "complex diagonal m_matrix", "double");

static octave_base_value *
default_numeric_conversion_function (const octave_base_value& a)
{
  const octave_complex_diag_matrix& v
    = dynamic_cast<const octave_complex_diag_matrix&> (a);

  return new octave_complex_matrix (v.complex_matrix_value ());
}

octave_base_value::type_conv_info
octave_complex_diag_matrix::numeric_conversion_function (void) const
{
  return octave_base_value::type_conv_info
           (default_numeric_conversion_function,
            octave_complex_matrix::static_type_id ());
}

static octave_base_value *
default_numeric_demotion_function (const octave_base_value& a)
{
  const octave_complex_diag_matrix& v
    = dynamic_cast<const octave_complex_diag_matrix&> (a);

  return new octave_float_complex_diag_matrix
               (v.float_complex_diag_matrix_value ());
}

octave_base_value::type_conv_info
octave_complex_diag_matrix::numeric_demotion_function (void) const
{
  return
    octave_base_value::type_conv_info (default_numeric_demotion_function,
                                       octave_float_complex_diag_matrix::static_type_id ());
}

octave_base_value *
octave_complex_diag_matrix::try_narrowing_conversion (void)
{
  octave_base_value *retval = nullptr;

  if (m_matrix.nelem () == 1)
    {
      retval = new octave_complex (m_matrix (0, 0));
      octave_base_value *rv2 = retval->try_narrowing_conversion ();
      if (rv2)
        {
          delete retval;
          retval = rv2;
        }
    }
  else if (m_matrix.all_elements_are_real ())
    {
      return new octave_diag_matrix (::real (m_matrix));
    }

  return retval;
}

DiagMatrix
octave_complex_diag_matrix::diag_matrix_value (bool force_conversion) const
{
  DiagMatrix retval;

  if (! force_conversion)
    warn_implicit_conversion ("Octave:imag-to-real",
                              type_name (), "real m_matrix");

  retval = ::real (m_matrix);

  return retval;
}

FloatDiagMatrix
octave_complex_diag_matrix::float_diag_matrix_value (bool force_conversion) const
{
  DiagMatrix retval;

  if (! force_conversion)
    warn_implicit_conversion ("Octave:imag-to-real",
                              type_name (), "real m_matrix");

  retval = ::real (m_matrix);

  return retval;
}

ComplexDiagMatrix
octave_complex_diag_matrix::complex_diag_matrix_value (bool) const
{
  return m_matrix;
}

FloatComplexDiagMatrix
octave_complex_diag_matrix::float_complex_diag_matrix_value (bool) const
{
  return FloatComplexDiagMatrix (m_matrix);
}

octave_value
octave_complex_diag_matrix::as_double (void) const
{
  return m_matrix;
}

octave_value
octave_complex_diag_matrix::as_single (void) const
{
  return FloatComplexDiagMatrix (m_matrix);
}

octave_value
octave_complex_diag_matrix::map (unary_mapper_t umap) const
{
  switch (umap)
    {
    case umap_abs:
      return m_matrix.abs ();
    case umap_real:
      return ::real (m_matrix);
    case umap_conj:
      return ::conj (m_matrix);
    case umap_imag:
      return ::imag (m_matrix);
    case umap_sqrt:
      {
        ComplexColumnVector tmp
          = m_matrix.extract_diag ().map<Complex> (std::sqrt);
        ComplexDiagMatrix retval (tmp);
        retval.resize (m_matrix.rows (), m_matrix.columns ());
        return retval;
      }
    default:
      return to_dense ().map (umap);
    }
}

bool
octave_complex_diag_matrix::save_binary (std::ostream& os, bool save_as_floats)
{

  int32_t r = m_matrix.rows ();
  int32_t c = m_matrix.cols ();
  os.write (reinterpret_cast<char *> (&r), 4);
  os.write (reinterpret_cast<char *> (&c), 4);

  ComplexMatrix m = ComplexMatrix (m_matrix.extract_diag ());
  save_type st = LS_DOUBLE;
  if (save_as_floats)
    {
      if (m.too_large_for_float ())
        {
          warning ("save: some values too large to save as floats --");
          warning ("save: saving as doubles instead");
        }
      else
        st = LS_FLOAT;
    }
  else if (m_matrix.length () > 4096) // FIXME: make this configurable.
    {
      double max_val, min_val;
      if (m.all_integers (max_val, min_val))
        st = octave::get_save_type (max_val, min_val);
    }

  const Complex *mtmp = m.data ();
  write_doubles (os, reinterpret_cast<const double *> (mtmp), st,
                 2 * m.numel ());

  return true;
}

bool
octave_complex_diag_matrix::load_binary (std::istream& is, bool swap,
                                         octave::mach_info::float_format fmt)
{
  int32_t r, c;
  char tmp;
  if (! (is.read (reinterpret_cast<char *> (&r), 4)
         && is.read (reinterpret_cast<char *> (&c), 4)
         && is.read (reinterpret_cast<char *> (&tmp), 1)))
    return false;
  if (swap)
    {
      swap_bytes<4> (&r);
      swap_bytes<4> (&c);
    }

  ComplexDiagMatrix m (r, c);
  Complex *im = m.fortran_vec ();
  octave_idx_type len = m.length ();
  read_doubles (is, reinterpret_cast<double *> (im),
                static_cast<save_type> (tmp), 2 * len, swap, fmt);

  if (! is)
    return false;

  m_matrix = m;

  return true;
}

bool
octave_complex_diag_matrix::chk_valid_scalar (const octave_value& val,
                                              Complex& x) const
{
  bool retval = val.is_complex_scalar () || val.is_real_scalar ();
  if (retval)
    x = val.complex_value ();
  return retval;
}

/*
%!assert <*36368> (diag ([1+i, 1-i])^2 , diag ([2i, -2i]), 4*eps)
*/