view scripts/image/rgb2gray.m @ 24612:6c8822790411

rgb2gray.m: Tweaks for Matlab compatibility. * rgb2gray.m: Change docstring to note that int8 and int16 images are accepted. Change documentation to show full 6-significant figure transformation matrix. If input is integer, save class in cls variable. Use 6-significant figure transformation matrix. If input was integer, restore integer class at end of function. Update BIST tests to reflect new behavior. Add new BIST test for int16 input.
author Rik <rik@octave.org>
date Wed, 17 Jan 2018 09:30:14 -0800
parents 3ad53e4793fc
children 93219261164d
line wrap: on
line source

## Copyright (C) 2018 Rik Wehbring
##
## This file is part of Octave.
##
## Octave is free software: you can redistribute it and/or modify it
## under the terms of the GNU General Public License as published by
## the Free Software Foundation, either version 3 of the License, or
## (at your option) any later version.
##
## Octave is distributed in the hope that it will be useful, but
## WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
## GNU General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with Octave; see the file COPYING.  If not, see
## <https://www.gnu.org/licenses/>.

## -*- texinfo -*-
## @deftypefn  {} {@var{I} =} rgb2gray (@var{rgb_img})
## @deftypefnx {} {@var{gray_map} =} rgb2gray (@var{rgb_map})
## Transform an image or colormap from red-green-blue (RGB) color space to
## a grayscale intensity image.
## 
## The input may be of class uint8, int8, uint16, int16, single, or double.
## The output is of the same class as the input.
##
## Implementation Note:
## The grayscale intensity is calculated as 
##
## @example
## @group
## @var{I} = 0.298936*@var{R} + 0.587043*@var{G} + 0.114021*@var{B}
## @end group
## @end example
##
## @noindent
## which corresponds to the luminance channel when RGB is translated to YIQ
## as documented in @url{http://en.wikipedia.org/wiki/YIQ}.
## @seealso{rgb2hsv, rgb2ind}
## @end deftypefn

function I = rgb2gray (rgb)

  if (nargin != 1)
    print_usage ();
  endif

  is_int = isinteger (rgb);
  if (is_int)
    cls = class (rgb);
  endif
  [rgb, sz, is_im, is_nd] ...
    = colorspace_conversion_input_check ("rgb2gray", "RGB", rgb);

  ## Reference matrix for transform from http://en.wikipedia.org/wiki/YIQ.
  ## Matlab uses this matrix for their conversion with oddly more precision.
  xform = [0.298936; 0.587043; 0.114021];

  ## Note that if the input is of class single, we also return an image
  ## of class single.  This is Matlab incompatible by design, since
  ## Matlab always returning class double, is a Matlab bug (see patch #8709)
  I = rgb * xform;

  ## Restore size if necessary
  if (is_im)
    if (is_nd)
      I = reshape (I, [sz(1), sz(2), sz(4)]);
    else
      I = reshape (I, sz(1:2));
    endif
  endif

  ## Restore integer class if necessary
  if (is_int)
    if (cls(end) == "8")  # uint8 or int8
      I *= 255; 
      if (cls(1) == "i")  # int8
        I -= 128;
      endif
    else                  # uint16 or int16
      I *= 65535; 
      if (cls(1) == "i")  # int16
        I -= 32768;
      endif
    endif
    I = feval (cls, I);
  endif

endfunction


## Test pure RED, GREEN, BLUE colors
%!assert (rgb2gray ([1 0 0]), 0.298936)
%!assert (rgb2gray ([0 1 0]), 0.587043)
%!assert (rgb2gray ([0 0 1]), 0.114021)

## test tolerance input checking on floats
%! assert (rgb2gray ([1.5 1 1]), 1.149468, -1.6e-3);

## Test ND input
%!test
%! rgb = rand (16, 16, 3, 5);
%! I = zeros (16, 16, 5);
%! for i = 1:5
%!   I(:,:,i) = rgb2gray (rgb(:,:,:,i));
%! endfor
%! assert (rgb2gray (rgb), I);

## Test output class and size for input images.
## Most of the tests only test for colormap input.

%!test
%! I = rgb2gray (rand (10, 10, 3));
%! assert (class (I), "double");
%! assert (size (I), [10 10]);

%!test
%! I = rgb2gray (rand (10, 10, 3, "single"));
%! assert (class (I), "single");
%! assert (size (I), [10 10]);

%!test
%! rgb = (rand (10, 10, 3) * 3 ) - 0.5; # values outside range [0 1]
%! I = rgb2gray (rgb);
%! assert (class (I), "double");
%! assert (size (I), [10 10]);

%!test
%! rgb = (rand (10, 10, 3, "single") * 3 ) - 0.5; # values outside range [0 1]
%! I = rgb2gray (rgb);
%! assert (class (I), "single");
%! assert (size (I), [10 10]);

%!test
%! I = rgb2gray (randi ([0 255], 10, 10, 3, "uint8"));
%! assert (class (I), "uint8");
%! assert (size (I), [10 10]);

%!test
%! I = rgb2gray (randi ([0 65535], 10, 10, 3, "uint16"));
%! assert (class (I), "uint16");
%! assert (size (I), [10 10]);

%!test
%! I = rgb2gray (randi ([-128 127], 10, 10, 3, "int8"));
%! assert (class (I), "int8");
%! assert (size (I), [10 10]);

%!test
%! I = rgb2gray (randi ([-32768 32767], 10, 10, 3, "int16"));
%! assert (class (I), "int16");
%! assert (size (I), [10 10]);

%!test
%! rgb_double = reshape ([1 0 0 0 0 1 0 0 0 0 1 0], [2 2 3]);
%! rgb_uint8  = reshape (uint8 ([255 0 0 0 0 255 0 0 0 0 255 0]),
%!                       [2 2 3]);
%! rgb_int16 = int16 (double (rgb_double * uint16 (65535)) - 32768);
%! expected = [0.298936, 0.114021; 0.587043, 0.0];
%!
%! assert (rgb2gray (rgb_double), expected);
%! assert (rgb2gray (rgb_uint8), uint8 (expected*255));
%! assert (rgb2gray (single (rgb_double)), single (expected));

## Test input validation
%!error rgb2gray ()
%!error rgb2gray (1,2)
%!error <invalid data type 'cell'> rgb2gray ({1})
%!error <RGB must be a colormap or RGB image> rgb2gray (ones (2,2))