view libinterp/corefcn/amd.cc @ 30564:796f54d4ddbf stable

update Octave Project Developers copyright for the new year In files that have the "Octave Project Developers" copyright notice, update for 2021. In all .txi and .texi files except gpl.txi and gpl.texi in the doc/liboctave and doc/interpreter directories, change the copyright to "Octave Project Developers", the same as used for other source files. Update copyright notices for 2022 (not done since 2019). For gpl.txi and gpl.texi, change the copyright notice to be "Free Software Foundation, Inc." and leave the date at 2007 only because this file only contains the text of the GPL, not anything created by the Octave Project Developers. Add Paul Thomas to contributors.in.
author John W. Eaton <jwe@octave.org>
date Tue, 28 Dec 2021 18:22:40 -0500
parents 7d6709900da7
children e88a07dec498
line wrap: on
line source

////////////////////////////////////////////////////////////////////////
//
// Copyright (C) 2008-2022 The Octave Project Developers
//
// See the file COPYRIGHT.md in the top-level directory of this
// distribution or <https://octave.org/copyright/>.
//
// This file is part of Octave.
//
// Octave is free software: you can redistribute it and/or modify it
// under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// Octave is distributed in the hope that it will be useful, but
// WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with Octave; see the file COPYING.  If not, see
// <https://www.gnu.org/licenses/>.
//
////////////////////////////////////////////////////////////////////////

// This is the octave interface to amd, which bore the copyright given
// in the help of the functions.

#if defined (HAVE_CONFIG_H)
#  include "config.h"
#endif

#include <cstdlib>

#include "CSparse.h"
#include "Sparse.h"
#include "dMatrix.h"
#include "oct-locbuf.h"
#include "oct-sparse.h"

#include "defun.h"
#include "error.h"
#include "errwarn.h"
#include "oct-map.h"
#include "ov.h"
#include "ovl.h"
#include "parse.h"

OCTAVE_NAMESPACE_BEGIN

DEFUN (amd, args, nargout,
       doc: /* -*- texinfo -*-
@deftypefn  {} {@var{p} =} amd (@var{S})
@deftypefnx {} {@var{p} =} amd (@var{S}, @var{opts})

Return the approximate minimum degree permutation of a matrix.

This is a permutation such that the Cholesky@tie{}factorization of
@code{@var{S} (@var{p}, @var{p})} tends to be sparser than the
Cholesky@tie{}factorization of @var{S} itself.  @code{amd} is typically
faster than @code{symamd} but serves a similar purpose.

The optional parameter @var{opts} is a structure that controls the behavior
of @code{amd}.  The fields of the structure are

@table @asis
@item @var{opts}.dense
Determines what @code{amd} considers to be a dense row or column of the
input matrix.  Rows or columns with more than @code{max (16, (dense *
sqrt (@var{n})))} entries, where @var{n} is the order of the matrix @var{S},
are ignored by @code{amd} during the calculation of the permutation.
The value of dense must be a positive scalar and the default value is 10.0

@item @var{opts}.aggressive
If this value is a nonzero scalar, then @code{amd} performs aggressive
absorption.  The default is not to perform aggressive absorption.
@end table

The author of the code itself is Timothy A. Davis
(see @url{http://faculty.cse.tamu.edu/davis/suitesparse.html}).
@seealso{symamd, colamd}
@end deftypefn */)
{
#if defined (HAVE_AMD)

  int nargin = args.length ();

  if (nargin < 1 || nargin > 2)
    print_usage ();

  octave_idx_type n_row, n_col;
  const suitesparse_integer *ridx, *cidx;
  SparseMatrix sm;
  SparseComplexMatrix scm;

  if (args(0).issparse ())
    {
      if (args(0).iscomplex ())
        {
          scm = args(0).sparse_complex_matrix_value ();
          n_row = scm.rows ();
          n_col = scm.cols ();
          ridx = to_suitesparse_intptr (scm.xridx ());
          cidx = to_suitesparse_intptr (scm.xcidx ());
        }
      else
        {
          sm = args(0).sparse_matrix_value ();
          n_row = sm.rows ();
          n_col = sm.cols ();
          ridx = to_suitesparse_intptr (sm.xridx ());
          cidx = to_suitesparse_intptr (sm.xcidx ());
        }
    }
  else
    {
      if (args(0).iscomplex ())
        sm = SparseMatrix (real (args(0).complex_matrix_value ()));
      else
        sm = SparseMatrix (args(0).matrix_value ());

      n_row = sm.rows ();
      n_col = sm.cols ();
      ridx = to_suitesparse_intptr (sm.xridx ());
      cidx = to_suitesparse_intptr (sm.xcidx ());
    }

  if (n_row != n_col)
    err_square_matrix_required ("amd", "S");

  OCTAVE_LOCAL_BUFFER (double, Control, AMD_CONTROL);
  AMD_NAME (_defaults) (Control);
  if (nargin > 1)
    {
      octave_scalar_map arg1 = args(1).xscalar_map_value ("amd: OPTS argument must be a scalar structure");

      octave_value tmp;

      tmp = arg1.getfield ("dense");
      if (tmp.is_defined ())
        Control[AMD_DENSE] = tmp.double_value ();

      tmp = arg1.getfield ("aggressive");
      if (tmp.is_defined ())
        Control[AMD_AGGRESSIVE] = tmp.double_value ();
    }

  OCTAVE_LOCAL_BUFFER (suitesparse_integer, P, n_col);
  Matrix xinfo (AMD_INFO, 1);
  double *Info = xinfo.fortran_vec ();

  // FIXME: how can we manage the memory allocation of amd
  //        in a cleaner manner?
  SUITESPARSE_ASSIGN_FPTR (malloc_func, amd_malloc, malloc);
  SUITESPARSE_ASSIGN_FPTR (free_func, amd_free, free);
  SUITESPARSE_ASSIGN_FPTR (calloc_func, amd_calloc, calloc);
  SUITESPARSE_ASSIGN_FPTR (realloc_func, amd_realloc, realloc);
  SUITESPARSE_ASSIGN_FPTR (printf_func, amd_printf, printf);

  octave_idx_type result = AMD_NAME (_order) (n_col, cidx, ridx, P, Control,
                                              Info);

  if (result == AMD_OUT_OF_MEMORY)
    error ("amd: out of memory");
  else if (result == AMD_INVALID)
    error ("amd: matrix S is corrupted");

  Matrix Pout (1, n_col);
  for (octave_idx_type i = 0; i < n_col; i++)
    Pout.xelem (i) = P[i] + 1;

  if (nargout > 1)
    return ovl (Pout, xinfo);
  else
    return ovl (Pout);

#else

  octave_unused_parameter (args);
  octave_unused_parameter (nargout);

  err_disabled_feature ("amd", "AMD");

#endif
}

/*
%!shared A, A2, opts
%! A = ones (20, 30);
%! A2 = ones (30, 30);

%!testif HAVE_AMD
%! assert(amd (A2), [1:30]);
%! opts.dense = 25;
%! assert(amd (A2, opts), [1:30]);
%! opts.aggressive = 1;
%! assert(amd (A2, opts), [1:30]);

%!testif HAVE_AMD
%! assert (amd ([]), zeros (1,0))

%!error <S must be a square matrix|was unavailable or disabled> amd (A)
%!error amd (A2, 2)
*/

OCTAVE_NAMESPACE_END