view libinterp/corefcn/det.cc @ 30564:796f54d4ddbf stable

update Octave Project Developers copyright for the new year In files that have the "Octave Project Developers" copyright notice, update for 2021. In all .txi and .texi files except gpl.txi and gpl.texi in the doc/liboctave and doc/interpreter directories, change the copyright to "Octave Project Developers", the same as used for other source files. Update copyright notices for 2022 (not done since 2019). For gpl.txi and gpl.texi, change the copyright notice to be "Free Software Foundation, Inc." and leave the date at 2007 only because this file only contains the text of the GPL, not anything created by the Octave Project Developers. Add Paul Thomas to contributors.in.
author John W. Eaton <jwe@octave.org>
date Tue, 28 Dec 2021 18:22:40 -0500
parents 32c3a5805893
children 32d2b6604a9f
line wrap: on
line source

////////////////////////////////////////////////////////////////////////
//
// Copyright (C) 1996-2022 The Octave Project Developers
//
// See the file COPYRIGHT.md in the top-level directory of this
// distribution or <https://octave.org/copyright/>.
//
// This file is part of Octave.
//
// Octave is free software: you can redistribute it and/or modify it
// under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// Octave is distributed in the hope that it will be useful, but
// WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with Octave; see the file COPYING.  If not, see
// <https://www.gnu.org/licenses/>.
//
////////////////////////////////////////////////////////////////////////

#if defined (HAVE_CONFIG_H)
#  include "config.h"
#endif

#include "DET.h"

#include "defun.h"
#include "error.h"
#include "errwarn.h"
#include "ovl.h"
#include "ops.h"

#include "ov-re-mat.h"
#include "ov-cx-mat.h"
#include "ov-flt-re-mat.h"
#include "ov-flt-cx-mat.h"
#include "ov-re-diag.h"
#include "ov-cx-diag.h"
#include "ov-flt-re-diag.h"
#include "ov-flt-cx-diag.h"
#include "ov-perm.h"

OCTAVE_NAMESPACE_BEGIN

#define MAYBE_CAST(VAR, CLASS)                                          \
  const CLASS *VAR = (arg.type_id () == CLASS::static_type_id ()        \
                      ? dynamic_cast<const CLASS *> (&arg.get_rep ())   \
                      : nullptr)

DEFUN (det, args, nargout,
       doc: /* -*- texinfo -*-
@deftypefn  {} {} det (@var{A})
@deftypefnx {} {[@var{d}, @var{rcond}] =} det (@var{A})
Compute the determinant of @var{A}.

Return an estimate of the reciprocal condition number if requested.

Programming Notes: Routines from @sc{lapack} are used for full matrices and
code from @sc{umfpack} is used for sparse matrices.

The determinant should not be used to check a matrix for singularity.
For that, use any of the condition number functions: @code{cond},
@code{condest}, @code{rcond}.
@seealso{cond, condest, rcond}
@end deftypefn */)
{
  if (args.length () != 1)
    print_usage ();

  octave_value arg = args(0);

  if (arg.isempty ())
    return ovl (1.0);

  if (arg.rows () != arg.columns ())
    err_square_matrix_required ("det", "A");

  octave_value_list retval (2);

  bool isfloat = arg.is_single_type ();

  if (arg.is_diag_matrix ())
    {
      if (nargout <= 1)
        retval.resize (1);

      if (arg.iscomplex ())
        {
          if (isfloat)
            {
              retval(0) = arg.float_complex_diag_matrix_value ()
                          .determinant ().value ();
              if (nargout > 1)
                retval(1) = arg.float_complex_diag_matrix_value ().rcond ();
            }
          else
            {
              retval(0) = arg.complex_diag_matrix_value ()
                          .determinant ().value ();
              if (nargout > 1)
                retval(1) = arg.complex_diag_matrix_value ().rcond ();
            }
        }
      else
        {
          if (isfloat)
            {
              retval(0) = arg.float_diag_matrix_value ()
                          .determinant ().value ();
              if (nargout > 1)
                retval(1) = arg.float_diag_matrix_value ().rcond ();
            }
          else
            {
              retval(0) = arg.diag_matrix_value ().determinant ().value ();
              if (nargout > 1)
                retval(1) = arg.diag_matrix_value ().rcond ();
            }
        }
    }
  else if (arg.is_perm_matrix ())
    {
      if (nargout <= 1)
        retval.resize (1);

      retval(0) = static_cast<double> (arg.perm_matrix_value ().determinant ());
      if (nargout > 1)
        retval(1) = 1.0;
    }
  else if (arg.is_single_type ())
    {
      if (arg.isreal ())
        {
          octave_idx_type info;
          float rcond = 0.0;
          // Always compute rcond, so we can detect singular matrices.
          FloatMatrix m = arg.float_matrix_value ();

          MAYBE_CAST (rep, octave_float_matrix);
          MatrixType mtype = (rep ? rep -> matrix_type () : MatrixType ());
          FloatDET det = m.determinant (mtype, info, rcond);
          retval(0) = (info == -1 ? 0.0f : det.value ());
          retval(1) = rcond;
          if (rep)
            rep->matrix_type (mtype);
        }
      else if (arg.iscomplex ())
        {
          octave_idx_type info;
          float rcond = 0.0;
          // Always compute rcond, so we can detect singular matrices.
          FloatComplexMatrix m = arg.float_complex_matrix_value ();

          MAYBE_CAST (rep, octave_float_complex_matrix);
          MatrixType mtype = (rep ? rep -> matrix_type () : MatrixType ());
          FloatComplexDET det = m.determinant (mtype, info, rcond);
          retval(0) = (info == -1 ? FloatComplex (0.0) : det.value ());
          retval(1) = rcond;
          if (rep)
            rep->matrix_type (mtype);
        }
    }
  else
    {
      if (arg.isreal ())
        {
          octave_idx_type info;
          double rcond = 0.0;
          // Always compute rcond, so we can detect singular matrices.
          if (arg.issparse ())
            {
              SparseMatrix m = arg.sparse_matrix_value ();

              DET det = m.determinant (info, rcond);
              retval(0) = (info == -1 ? 0.0 : det.value ());
              retval(1) = rcond;
            }
          else
            {
              Matrix m = arg.matrix_value ();

              MAYBE_CAST (rep, octave_matrix);
              MatrixType mtype = (rep ? rep -> matrix_type ()
                                      : MatrixType ());
              DET det = m.determinant (mtype, info, rcond);
              retval(0) = (info == -1 ? 0.0 : det.value ());
              retval(1) = rcond;
              if (rep)
                rep->matrix_type (mtype);
            }
        }
      else if (arg.iscomplex ())
        {
          octave_idx_type info;
          double rcond = 0.0;
          // Always compute rcond, so we can detect singular matrices.
          if (arg.issparse ())
            {
              SparseComplexMatrix m = arg.sparse_complex_matrix_value ();

              ComplexDET det = m.determinant (info, rcond);
              retval(0) = (info == -1 ? Complex (0.0) : det.value ());
              retval(1) = rcond;
            }
          else
            {
              ComplexMatrix m = arg.complex_matrix_value ();

              MAYBE_CAST (rep, octave_complex_matrix);
              MatrixType mtype = (rep ? rep -> matrix_type ()
                                      : MatrixType ());
              ComplexDET det = m.determinant (mtype, info, rcond);
              retval(0) = (info == -1 ? Complex (0.0) : det.value ());
              retval(1) = rcond;
              if (rep)
                rep->matrix_type (mtype);
            }
        }
      else
        err_wrong_type_arg ("det", arg);
    }

  return retval;
}

/*
%!assert (det ([1, 2; 3, 4]), -2, 10*eps)
%!assert (det (single ([1, 2; 3, 4])), single (-2), 10*eps ("single"))
%!assert (det (eye (2000)), 1)
%!error det ()
%!error det (1, 2)
%!error <must be a square matrix> det ([1, 2; 3, 4; 5, 6])
*/

OCTAVE_NAMESPACE_END