view libinterp/corefcn/gcd.cc @ 30564:796f54d4ddbf stable

update Octave Project Developers copyright for the new year In files that have the "Octave Project Developers" copyright notice, update for 2021. In all .txi and .texi files except gpl.txi and gpl.texi in the doc/liboctave and doc/interpreter directories, change the copyright to "Octave Project Developers", the same as used for other source files. Update copyright notices for 2022 (not done since 2019). For gpl.txi and gpl.texi, change the copyright notice to be "Free Software Foundation, Inc." and leave the date at 2007 only because this file only contains the text of the GPL, not anything created by the Octave Project Developers. Add Paul Thomas to contributors.in.
author John W. Eaton <jwe@octave.org>
date Tue, 28 Dec 2021 18:22:40 -0500
parents 7d6709900da7
children 83f9f8bda883 ed06f74e16cf
line wrap: on
line source

////////////////////////////////////////////////////////////////////////
//
// Copyright (C) 2004-2022 The Octave Project Developers
//
// See the file COPYRIGHT.md in the top-level directory of this
// distribution or <https://octave.org/copyright/>.
//
// This file is part of Octave.
//
// Octave is free software: you can redistribute it and/or modify it
// under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// Octave is distributed in the hope that it will be useful, but
// WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with Octave; see the file COPYING.  If not, see
// <https://www.gnu.org/licenses/>.
//
////////////////////////////////////////////////////////////////////////

#if defined (HAVE_CONFIG_H)
#  include "config.h"
#endif

#include "dNDArray.h"
#include "CNDArray.h"
#include "fNDArray.h"
#include "fCNDArray.h"
#include "lo-mappers.h"
#include "oct-binmap.h"

#include "defun.h"
#include "error.h"
#include "ovl.h"

OCTAVE_NAMESPACE_BEGIN

static double
simple_gcd (double a, double b)
{
  if (! math::isinteger (a) || ! math::isinteger (b))
    error ("gcd: all values must be integers");

  double aa = fabs (a);
  double bb = fabs (b);

  while (bb != 0)
    {
      double tt = fmod (aa, bb);
      aa = bb;
      bb = tt;
    }

  return aa;
}

// Don't use the Complex and FloatComplex typedefs because we need to
// refer to the actual float precision FP in the body (and when gcc
// implements template aliases from C++0x, can do a small fix here).
template <typename FP>
static void
divide (const std::complex<FP>& a, const std::complex<FP>& b,
        std::complex<FP>& q, std::complex<FP>& r)
{
  FP qr = std::floor ((a/b).real () + 0.5);
  FP qi = std::floor ((a/b).imag () + 0.5);

  q = std::complex<FP> (qr, qi);

  r = a - q*b;
}

template <typename FP>
static std::complex<FP>
simple_gcd (const std::complex<FP>& a, const std::complex<FP>& b)
{
  if (! math::isinteger (a.real ())
      || ! math::isinteger (a.imag ())
      || ! math::isinteger (b.real ())
      || ! math::isinteger (b.imag ()))
    error ("gcd: all complex parts must be integers");

  std::complex<FP> aa = a;
  std::complex<FP> bb = b;

  if (abs (aa) < abs (bb))
    std::swap (aa, bb);

  while (abs (bb) != 0)
    {
      std::complex<FP> qq, rr;
      divide (aa, bb, qq, rr);
      aa = bb;
      bb = rr;
    }

  return aa;
}

template <typename T>
static octave_int<T>
simple_gcd (const octave_int<T>& a, const octave_int<T>& b)
{
  T aa = a.abs ().value ();
  T bb = b.abs ().value ();

  while (bb != 0)
    {
      T tt = aa % bb;
      aa = bb;
      bb = tt;
    }

  return aa;
}

static double
extended_gcd (double a, double b, double& x, double& y)
{
  if (! math::isinteger (a) || ! math::isinteger (b))
    error ("gcd: all values must be integers");

  double aa = fabs (a);
  double bb = fabs (b);

  double xx, lx, yy, ly;
  xx = 0, lx = 1;
  yy = 1, ly = 0;

  while (bb != 0)
    {
      double qq = std::floor (aa / bb);
      double tt = fmod (aa, bb);

      aa = bb;
      bb = tt;

      double tx = lx - qq*xx;
      lx = xx;
      xx = tx;

      double ty = ly - qq*yy;
      ly = yy;
      yy = ty;
    }

  x = (a >= 0 ? lx : -lx);
  y = (b >= 0 ? ly : -ly);

  return aa;
}

template <typename FP>
static std::complex<FP>
extended_gcd (const std::complex<FP>& a, const std::complex<FP>& b,
              std::complex<FP>& x, std::complex<FP>& y)
{
  if (! math::isinteger (a.real ())
      || ! math::isinteger (a.imag ())
      || ! math::isinteger (b.real ())
      || ! math::isinteger (b.imag ()))
    error ("gcd: all complex parts must be integers");

  std::complex<FP> aa = a;
  std::complex<FP> bb = b;
  bool swapped = false;
  if (abs (aa) < abs (bb))
    {
      std::swap (aa, bb);
      swapped = true;
    }

  std::complex<FP> xx, lx, yy, ly;
  xx = 0, lx = 1;
  yy = 1, ly = 0;

  while (abs(bb) != 0)
    {
      std::complex<FP> qq, rr;
      divide (aa, bb, qq, rr);
      aa = bb;
      bb = rr;

      std::complex<FP> tx = lx - qq*xx;
      lx = xx;
      xx = tx;

      std::complex<FP> ty = ly - qq*yy;
      ly = yy;
      yy = ty;
    }

  x = lx;
  y = ly;

  if (swapped)
    std::swap (x, y);

  return aa;
}

template <typename T>
static octave_int<T>
extended_gcd (const octave_int<T>& a, const octave_int<T>& b,
              octave_int<T>& x, octave_int<T>& y)
{
  T aa = a.abs ().value ();
  T bb = b.abs ().value ();
  T xx, lx, yy, ly;
  xx = 0, lx = 1;
  yy = 1, ly = 0;

  while (bb != 0)
    {
      T qq = aa / bb;
      T tt = aa % bb;
      aa = bb;
      bb = tt;

      T tx = lx - qq*xx;
      lx = xx;
      xx = tx;

      T ty = ly - qq*yy;
      ly = yy;
      yy = ty;
    }

  x = octave_int<T> (lx) * a.signum ();
  y = octave_int<T> (ly) * b.signum ();

  return aa;
}

template <typename NDA>
static octave_value
do_simple_gcd (const octave_value& a, const octave_value& b)
{
  typedef typename NDA::element_type T;
  octave_value retval;

  if (a.is_scalar_type () && b.is_scalar_type ())
    {
      // Optimize scalar case.
      T aa = octave_value_extract<T> (a);
      T bb = octave_value_extract<T> (b);
      retval = simple_gcd (aa, bb);
    }
  else
    {
      NDA aa = octave_value_extract<NDA> (a);
      NDA bb = octave_value_extract<NDA> (b);
      retval = binmap<T> (aa, bb, simple_gcd, "gcd");
    }

  return retval;
}

// Dispatcher
static octave_value
do_simple_gcd (const octave_value& a, const octave_value& b)
{
  octave_value retval;
  builtin_type_t btyp = btyp_mixed_numeric (a.builtin_type (),
                                            b.builtin_type ());
  switch (btyp)
    {
    case btyp_double:
      if (a.issparse () && b.issparse ())
        {
          retval = do_simple_gcd<SparseMatrix> (a, b);
          break;
        }
      OCTAVE_FALLTHROUGH;

    case btyp_float:
      retval = do_simple_gcd<NDArray> (a, b);
      break;

#define MAKE_INT_BRANCH(X)                            \
    case btyp_ ## X:                                  \
      retval = do_simple_gcd<X ## NDArray> (a, b);    \
      break

    MAKE_INT_BRANCH (int8);
    MAKE_INT_BRANCH (int16);
    MAKE_INT_BRANCH (int32);
    MAKE_INT_BRANCH (int64);
    MAKE_INT_BRANCH (uint8);
    MAKE_INT_BRANCH (uint16);
    MAKE_INT_BRANCH (uint32);
    MAKE_INT_BRANCH (uint64);

#undef MAKE_INT_BRANCH

    case btyp_complex:
      retval = do_simple_gcd<ComplexNDArray> (a, b);
      break;

    case btyp_float_complex:
      retval = do_simple_gcd<FloatComplexNDArray> (a, b);
      break;

    default:
      error ("gcd: invalid class combination for gcd: %s and %s\n",
             a.class_name ().c_str (), b.class_name ().c_str ());
    }

  if (btyp == btyp_float)
    retval = retval.float_array_value ();

  return retval;
}

template <typename NDA>
static octave_value
do_extended_gcd (const octave_value& a, const octave_value& b,
                 octave_value& x, octave_value& y)
{
  typedef typename NDA::element_type T;
  octave_value retval;

  if (a.is_scalar_type () && b.is_scalar_type ())
    {
      // Optimize scalar case.
      T aa = octave_value_extract<T> (a);
      T bb = octave_value_extract<T> (b);
      T xx, yy;
      retval = extended_gcd (aa, bb, xx, yy);
      x = xx;
      y = yy;
    }
  else
    {
      NDA aa = octave_value_extract<NDA> (a);
      NDA bb = octave_value_extract<NDA> (b);

      dim_vector dv = aa.dims ();
      if (aa.numel () == 1)
        dv = bb.dims ();
      else if (bb.numel () != 1 && bb.dims () != dv)
        err_nonconformant ("gcd", a.dims (), b.dims ());

      NDA gg (dv), xx (dv), yy (dv);

      const T *aptr = aa.data ();
      const T *bptr = bb.data ();

      bool inca = aa.numel () != 1;
      bool incb = bb.numel () != 1;

      T *gptr = gg.fortran_vec ();
      T *xptr = xx.fortran_vec ();
      T *yptr = yy.fortran_vec ();

      octave_idx_type n = gg.numel ();
      for (octave_idx_type i = 0; i < n; i++)
        {
          octave_quit ();

          *gptr++ = extended_gcd (*aptr, *bptr, *xptr++, *yptr++);

          aptr += inca;
          bptr += incb;
        }

      x = xx;
      y = yy;

      retval = gg;
    }

  return retval;
}

// Dispatcher
static octave_value
do_extended_gcd (const octave_value& a, const octave_value& b,
                 octave_value& x, octave_value& y)
{
  octave_value retval;

  builtin_type_t btyp = btyp_mixed_numeric (a.builtin_type (),
                                            b.builtin_type ());
  switch (btyp)
    {
    case btyp_double:
    case btyp_float:
      retval = do_extended_gcd<NDArray> (a, b, x, y);
      break;

#define MAKE_INT_BRANCH(X)                                    \
    case btyp_ ## X:                                          \
      retval = do_extended_gcd<X ## NDArray> (a, b, x, y);    \
      break

    MAKE_INT_BRANCH (int8);
    MAKE_INT_BRANCH (int16);
    MAKE_INT_BRANCH (int32);
    MAKE_INT_BRANCH (int64);
    MAKE_INT_BRANCH (uint8);
    MAKE_INT_BRANCH (uint16);
    MAKE_INT_BRANCH (uint32);
    MAKE_INT_BRANCH (uint64);

#undef MAKE_INT_BRANCH

    case btyp_complex:
      retval = do_extended_gcd<ComplexNDArray> (a, b, x, y);
      break;

    case btyp_float_complex:
      retval = do_extended_gcd<FloatComplexNDArray> (a, b, x, y);
      break;

    default:
      error ("gcd: invalid class combination for gcd: %s and %s\n",
             a.class_name ().c_str (), b.class_name ().c_str ());
    }

  // For consistency.
  if (a.issparse () && b.issparse ())
    {
      retval = retval.sparse_matrix_value ();
      x = x.sparse_matrix_value ();
      y = y.sparse_matrix_value ();
    }

  if (btyp == btyp_float)
    {
      retval = retval.float_array_value ();
      x = x.float_array_value ();
      y = y.float_array_value ();
    }

  return retval;
}

DEFUN (gcd, args, nargout,
       doc: /* -*- texinfo -*-
@deftypefn  {} {@var{g} =} gcd (@var{a1}, @var{a2}, @dots{})
@deftypefnx {} {[@var{g}, @var{v1}, @dots{}] =} gcd (@var{a1}, @var{a2}, @dots{})
Compute the greatest common divisor of @var{a1}, @var{a2}, @dots{}.

All arguments must be the same size or scalar.  For arrays, the greatest common
divisor is calculated for each element individually.  All elements must be
ordinary or Gaussian (complex) integers.  Note that for Gaussian integers, the
gcd is only unique up to a phase factor (multiplication by 1, -1, i, or -i), so
an arbitrary greatest common divisor among the four possible is returned.

Optional return arguments @var{v1}, @dots{}, contain integer vectors such
that,

@tex
$g = v_1 a_1 + v_2 a_2 + \cdots$
@end tex
@ifnottex

@example
@var{g} = @var{v1} .* @var{a1} + @var{v2} .* @var{a2} + @dots{}
@end example

@end ifnottex

Example code:

@example
@group
gcd ([15, 9], [20, 18])
   @result{}  5  9
@end group
@end example

@seealso{lcm, factor, isprime}
@end deftypefn */)
{
  int nargin = args.length ();

  if (nargin < 2)
    print_usage ();

  octave_value_list retval;

  if (nargout > 1)
    {
      retval.resize (nargin + 1);

      retval(0) = do_extended_gcd (args(0), args(1), retval(1), retval(2));

      for (int j = 2; j < nargin; j++)
        {
          octave_value x;
          retval(0) = do_extended_gcd (retval(0), args(j), x, retval(j+1));
          for (int i = 0; i < j; i++)
            retval(i+1).assign (octave_value::op_el_mul_eq, x);
        }
    }
  else
    {
      retval(0) = do_simple_gcd (args(0), args(1));

      for (int j = 2; j < nargin; j++)
        retval(0) = do_simple_gcd (retval(0), args(j));
    }

  return retval;
}

/*
%!assert (gcd (200, 300, 50, 35), 5)
%!assert (gcd (int16 (200), int16 (300), int16 (50), int16 (35)), int16 (5))
%!assert (gcd (uint64 (200), uint64 (300), uint64 (50), uint64 (35)), uint64 (5))
%!assert (gcd (18-i, -29+3i), -3-4i)

%!test
%! p = [953 967];
%! u = [953 + i*971, 967 + i*977];
%! [d, k(1), k(2)] = gcd (p(1), p(2));
%! [z, w(1), w(2)] = gcd (u(1), u(2));
%! assert (d, 1);
%! assert (sum (p.*k), d);
%! assert (abs (z), sqrt (2));
%! assert (abs (sum (u.*w)), sqrt (2));

%!error <all values must be integers> gcd (1/2, 2)
%!error <all complex parts must be integers> gcd (e + i*pi, 1)

%!error gcd ()

%!test
%! s.a = 1;
%! fail ("gcd (s)");
*/

OCTAVE_NAMESPACE_END