view libinterp/corefcn/symrcm.cc @ 30564:796f54d4ddbf stable

update Octave Project Developers copyright for the new year In files that have the "Octave Project Developers" copyright notice, update for 2021. In all .txi and .texi files except gpl.txi and gpl.texi in the doc/liboctave and doc/interpreter directories, change the copyright to "Octave Project Developers", the same as used for other source files. Update copyright notices for 2022 (not done since 2019). For gpl.txi and gpl.texi, change the copyright notice to be "Free Software Foundation, Inc." and leave the date at 2007 only because this file only contains the text of the GPL, not anything created by the Octave Project Developers. Add Paul Thomas to contributors.in.
author John W. Eaton <jwe@octave.org>
date Tue, 28 Dec 2021 18:22:40 -0500
parents a61e1a0f6024
children e88a07dec498
line wrap: on
line source

////////////////////////////////////////////////////////////////////////
//
// Copyright (C) 2007-2022 The Octave Project Developers
//
// See the file COPYRIGHT.md in the top-level directory of this
// distribution or <https://octave.org/copyright/>.
//
// This file is part of Octave.
//
// Octave is free software: you can redistribute it and/or modify it
// under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// Octave is distributed in the hope that it will be useful, but
// WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with Octave; see the file COPYING.  If not, see
// <https://www.gnu.org/licenses/>.
//
////////////////////////////////////////////////////////////////////////

/*
An implementation of the Reverse Cuthill-McKee algorithm (symrcm)

The implementation of this algorithm is based in the descriptions found in

@INPROCEEDINGS{,
        author = {E. Cuthill and J. McKee},
        title = {Reducing the Bandwidth of Sparse Symmetric Matrices},
        booktitle = {Proceedings of the 24th ACM National Conference},
        publisher = {Brandon Press},
        pages = {157 -- 172},
        location = {New Jersey},
        year = {1969}
}

@BOOK{,
        author = {Alan George and Joseph W. H. Liu},
        title = {Computer Solution of Large Sparse Positive Definite Systems},
        publisher = {Prentice Hall Series in Computational Mathematics},
        ISBN = {0-13-165274-5},
        year = {1981}
}

The algorithm represents a heuristic approach to the NP-complete minimum
bandwidth problem.

Written by Michael Weitzel <michael.weitzel@@uni-siegen.de>
                           <weitzel@@ldknet.org>
*/

#if defined (HAVE_CONFIG_H)
#  include "config.h"
#endif

#include <algorithm>

#include "CSparse.h"
#include "boolNDArray.h"
#include "dNDArray.h"
#include "dSparse.h"
#include "oct-locbuf.h"
#include "oct-sparse.h"
#include "quit.h"

#include "defun.h"
#include "errwarn.h"
#include "ov.h"
#include "ovl.h"

OCTAVE_NAMESPACE_BEGIN

// A node struct for the Cuthill-McKee algorithm
struct CMK_Node
{
  // the node's id (matrix row index)
  octave_idx_type id;
  // the node's degree
  octave_idx_type deg;
  // minimal distance to the root of the spanning tree
  octave_idx_type dist;
};

// A simple queue.
// Queues Q have a fixed maximum size N (rows,cols of the matrix) and are
// stored in an array.  qh and qt point to queue head and tail.

// Enqueue operation (adds a node "o" at the tail)

inline static void
Q_enq (CMK_Node *Q, octave_idx_type N, octave_idx_type& qt, const CMK_Node& o)
{
  Q[qt] = o;
  qt = (qt + 1) % (N + 1);
}

// Dequeue operation (removes a node from the head)

inline static CMK_Node
Q_deq (CMK_Node *Q, octave_idx_type N, octave_idx_type& qh)
{
  CMK_Node r = Q[qh];
  qh = (qh + 1) % (N + 1);
  return r;
}

// Predicate (queue empty)
#define Q_empty(Q, N, qh, qt)   ((qh) == (qt))

// A simple, array-based binary heap (used as a priority queue for nodes)

// the left descendant of entry i
#define LEFT(i)         (((i) << 1) + 1)        // = (2*(i)+1)
// the right descendant of entry i
#define RIGHT(i)        (((i) << 1) + 2)        // = (2*(i)+2)
// the parent of entry i
#define PARENT(i)       (((i) - 1) >> 1)        // = floor(((i)-1)/2)

// Builds a min-heap (the root contains the smallest element).  A is an array
// with the graph's nodes, i is a starting position, size is the length of A.

static void
H_heapify_min (CMK_Node *A, octave_idx_type i, octave_idx_type size)
{
  octave_idx_type j = i;
  for (;;)
    {
      octave_idx_type l = LEFT(j);
      octave_idx_type r = RIGHT(j);

      octave_idx_type smallest;
      if (l < size && A[l].deg < A[j].deg)
        smallest = l;
      else
        smallest = j;

      if (r < size && A[r].deg < A[smallest].deg)
        smallest = r;

      if (smallest != j)
        {
          std::swap (A[j], A[smallest]);
          j = smallest;
        }
      else
        break;
    }
}

// Heap operation insert.  Running time is O(log(n))

static void
H_insert (CMK_Node *H, octave_idx_type& h, const CMK_Node& o)
{
  octave_idx_type i = h++;

  H[i] = o;

  if (i == 0)
    return;
  do
    {
      octave_idx_type p = PARENT(i);
      if (H[i].deg < H[p].deg)
        {
          std::swap (H[i], H[p]);

          i = p;
        }
      else
        break;
    }
  while (i > 0);
}

// Heap operation remove-min.  Removes the smallest element in O(1) and
// reorganizes the heap optionally in O(log(n))

inline static CMK_Node
H_remove_min (CMK_Node *H, octave_idx_type& h, int reorg/*=1*/)
{
  CMK_Node r = H[0];
  H[0] = H[--h];
  if (reorg)
    H_heapify_min (H, 0, h);
  return r;
}

// Predicate (heap empty)
#define H_empty(H, h)   ((h) == 0)

// Helper function for the Cuthill-McKee algorithm.  Tries to determine a
// pseudo-peripheral node of the graph as starting node.

static octave_idx_type
find_starting_node (octave_idx_type N, const octave_idx_type *ridx,
                    const octave_idx_type *cidx, const octave_idx_type *ridx2,
                    const octave_idx_type *cidx2, octave_idx_type *D,
                    octave_idx_type start)
{
  CMK_Node w;

  OCTAVE_LOCAL_BUFFER (CMK_Node, Q, N+1);
  boolNDArray btmp (dim_vector (1, N), false);
  bool *visit = btmp.fortran_vec ();

  octave_idx_type qh = 0;
  octave_idx_type qt = 0;
  CMK_Node x;
  x.id = start;
  x.deg = D[start];
  x.dist = 0;
  Q_enq (Q, N, qt, x);
  visit[start] = true;

  // distance level
  octave_idx_type level = 0;
  // current largest "eccentricity"
  octave_idx_type max_dist = 0;

  for (;;)
    {
      while (! Q_empty (Q, N, qh, qt))
        {
          CMK_Node v = Q_deq (Q, N, qh);

          if (v.dist > x.dist || (v.id != x.id && v.deg > x.deg))
            x = v;

          octave_idx_type i = v.id;

          // add all unvisited neighbors to the queue
          octave_idx_type j1 = cidx[i];
          octave_idx_type j2 = cidx2[i];
          while (j1 < cidx[i+1] || j2 < cidx2[i+1])
            {
              octave_quit ();

              if (j1 == cidx[i+1])
                {
                  octave_idx_type r2 = ridx2[j2++];
                  if (! visit[r2])
                    {
                      // the distance of node j is dist(i)+1
                      w.id = r2;
                      w.deg = D[r2];
                      w.dist = v.dist+1;
                      Q_enq (Q, N, qt, w);
                      visit[r2] = true;

                      if (w.dist > level)
                        level = w.dist;
                    }
                }
              else if (j2 == cidx2[i+1])
                {
                  octave_idx_type r1 = ridx[j1++];
                  if (! visit[r1])
                    {
                      // the distance of node j is dist(i)+1
                      w.id = r1;
                      w.deg = D[r1];
                      w.dist = v.dist+1;
                      Q_enq (Q, N, qt, w);
                      visit[r1] = true;

                      if (w.dist > level)
                        level = w.dist;
                    }
                }
              else
                {
                  octave_idx_type r1 = ridx[j1];
                  octave_idx_type r2 = ridx2[j2];
                  if (r1 <= r2)
                    {
                      if (! visit[r1])
                        {
                          w.id = r1;
                          w.deg = D[r1];
                          w.dist = v.dist+1;
                          Q_enq (Q, N, qt, w);
                          visit[r1] = true;

                          if (w.dist > level)
                            level = w.dist;
                        }
                      j1++;
                      if (r1 == r2)
                        j2++;
                    }
                  else
                    {
                      if (! visit[r2])
                        {
                          w.id = r2;
                          w.deg = D[r2];
                          w.dist = v.dist+1;
                          Q_enq (Q, N, qt, w);
                          visit[r2] = true;

                          if (w.dist > level)
                            level = w.dist;
                        }
                      j2++;
                    }
                }
            }
        } // finish of BFS

      if (max_dist < x.dist)
        {
          max_dist = x.dist;

          for (octave_idx_type i = 0; i < N; i++)
            visit[i] = false;

          visit[x.id] = true;
          x.dist = 0;
          qt = qh = 0;
          Q_enq (Q, N, qt, x);
        }
      else
        break;
    }
  return x.id;
}

// Calculates the node's degrees.  This means counting the nonzero elements
// in the symmetric matrix' rows.  This works for non-symmetric matrices
// as well.

static octave_idx_type
calc_degrees (octave_idx_type N, const octave_idx_type *ridx,
              const octave_idx_type *cidx, octave_idx_type *D)
{
  octave_idx_type max_deg = 0;

  for (octave_idx_type i = 0; i < N; i++)
    D[i] = 0;

  for (octave_idx_type j = 0; j < N; j++)
    {
      for (octave_idx_type i = cidx[j]; i < cidx[j+1]; i++)
        {
          octave_quit ();

          octave_idx_type k = ridx[i];
          // there is a nonzero element (k,j)
          D[k]++;
          if (D[k] > max_deg)
            max_deg = D[k];
          // if there is no element (j,k) there is one in
          // the symmetric matrix:
          if (k != j)
            {
              bool found = false;
              for (octave_idx_type l = cidx[k]; l < cidx[k + 1]; l++)
                {
                  octave_quit ();

                  if (ridx[l] == j)
                    {
                      found = true;
                      break;
                    }
                  else if (ridx[l] > j)
                    break;
                }

              if (! found)
                {
                  // A(j,k) == 0
                  D[j]++;
                  if (D[j] > max_deg)
                    max_deg = D[j];
                }
            }
        }
    }
  return max_deg;
}

// Transpose of the structure of a square sparse matrix

static void
transpose (octave_idx_type N, const octave_idx_type *ridx,
           const octave_idx_type *cidx, octave_idx_type *ridx2,
           octave_idx_type *cidx2)
{
  octave_idx_type nz = cidx[N];

  OCTAVE_LOCAL_BUFFER (octave_idx_type, w, N + 1);
  for (octave_idx_type i = 0; i < N; i++)
    w[i] = 0;
  for (octave_idx_type i = 0; i < nz; i++)
    w[ridx[i]]++;
  nz = 0;
  for (octave_idx_type i = 0; i < N; i++)
    {
      octave_quit ();

      cidx2[i] = nz;
      nz += w[i];
      w[i] = cidx2[i];
    }
  cidx2[N] = nz;
  w[N] = nz;

  for (octave_idx_type j = 0; j < N; j++)
    for (octave_idx_type k = cidx[j]; k < cidx[j + 1]; k++)
      {
        octave_quit ();

        octave_idx_type q = w[ridx[k]]++;
        ridx2[q] = j;
      }
}

// An implementation of the Cuthill-McKee algorithm.
DEFUN (symrcm, args, ,
       doc: /* -*- texinfo -*-
@deftypefn {} {@var{p} =} symrcm (@var{S})
Return the symmetric reverse @nospell{Cuthill-McKee} permutation of @var{S}.

@var{p} is a permutation vector such that
@code{@var{S}(@var{p}, @var{p})} tends to have its diagonal elements closer
to the diagonal than @var{S}.  This is a good preordering for LU or
Cholesky@tie{}factorization of matrices that come from ``long, skinny''
problems.  It works for both symmetric and asymmetric @var{S}.

The algorithm represents a heuristic approach to the NP-complete bandwidth
minimization problem.  The implementation is based in the descriptions found
in

@nospell{E. Cuthill, J. McKee}.
@cite{Reducing the Bandwidth of Sparse Symmetric Matrices}.
Proceedings of the 24th @nospell{ACM} National Conference,
157--172 1969, Brandon Press, New Jersey.

@nospell{A. George, J.W.H. Liu}.  @cite{Computer Solution of Large Sparse
Positive Definite Systems}, Prentice Hall Series in Computational
Mathematics, ISBN 0-13-165274-5, 1981.

@seealso{colperm, colamd, symamd}
@end deftypefn */)
{
  if (args.length () != 1)
    print_usage ();

  octave_value arg = args(0);

  // the parameter of the matrix is converted into a sparse matrix
  //(if necessary)
  octave_idx_type *cidx;
  octave_idx_type *ridx;
  SparseMatrix Ar;
  SparseComplexMatrix Ac;

  if (arg.isreal ())
    {
      Ar = arg.sparse_matrix_value ();
      // Note cidx/ridx are const, so use xridx and xcidx...
      cidx = Ar.xcidx ();
      ridx = Ar.xridx ();
    }
  else
    {
      Ac = arg.sparse_complex_matrix_value ();
      cidx = Ac.xcidx ();
      ridx = Ac.xridx ();
    }

  octave_idx_type nr = arg.rows ();
  octave_idx_type nc = arg.columns ();

  if (nr != nc)
    err_square_matrix_required ("symrcm", "S");

  if (nr == 0 && nc == 0)
    return ovl (NDArray (dim_vector (1, 0)));

  // sizes of the heaps
  octave_idx_type s = 0;

  // head- and tail-indices for the queue
  octave_idx_type qt = 0;
  octave_idx_type qh = 0;
  CMK_Node v, w;
  // dimension of the matrix
  octave_idx_type N = nr;

  OCTAVE_LOCAL_BUFFER (octave_idx_type, cidx2, N + 1);
  OCTAVE_LOCAL_BUFFER (octave_idx_type, ridx2, cidx[N]);
  transpose (N, ridx, cidx, ridx2, cidx2);

  // the permutation vector
  NDArray P (dim_vector (1, N));

  // compute the node degrees
  OCTAVE_LOCAL_BUFFER (octave_idx_type, D, N);
  octave_idx_type max_deg = calc_degrees (N, ridx, cidx, D);

  // if none of the nodes has a degree > 0 (a matrix of zeros)
  // the return value corresponds to the identity permutation
  if (max_deg == 0)
    {
      for (octave_idx_type i = 0; i < N; i++)
        P(i) = i;

      return ovl (P);
    }

  // a heap for the a node's neighbors.  The number of neighbors is
  // limited by the maximum degree max_deg:
  OCTAVE_LOCAL_BUFFER (CMK_Node, S, max_deg);

  // a queue for the BFS.  The array is always one element larger than
  // the number of entries that are stored.
  OCTAVE_LOCAL_BUFFER (CMK_Node, Q, N+1);

  // a counter (for building the permutation)
  octave_idx_type c = -1;

  // upper bound for the bandwidth (=quality of solution)
  // initialize the bandwidth of the graph with 0.  B contains the
  // the maximum of the theoretical lower limits of the subgraphs
  // bandwidths.
  octave_idx_type B = 0;

  // mark all nodes as unvisited; with the exception of the nodes
  // that have degree==0 and build a CC of the graph.

  boolNDArray btmp (dim_vector (1, N), false);
  bool *visit = btmp.fortran_vec ();

  do
    {
      // locate an unvisited starting node of the graph
      octave_idx_type i;
      for (i = 0; i < N; i++)
        if (! visit[i])
          break;

      // locate a probably better starting node
      v.id = find_starting_node (N, ridx, cidx, ridx2, cidx2, D, i);

      // mark the node as visited and enqueue it (a starting node
      // for the BFS).  Since the node will be a root of a spanning
      // tree, its dist is 0.
      v.deg = D[v.id];
      v.dist = 0;
      visit[v.id] = true;
      Q_enq (Q, N, qt, v);

      // lower bound for the bandwidth of a subgraph
      // keep a "level" in the spanning tree (= min. distance to the
      // root) for determining the bandwidth of the computed
      // permutation P
      octave_idx_type Bsub = 0;
      // min. dist. to the root is 0
      octave_idx_type level = 0;
      // the root is the first/only node on level 0
      octave_idx_type level_N = 1;

      while (! Q_empty (Q, N, qh, qt))
        {
          v = Q_deq (Q, N, qh);
          i = v.id;

          c++;

          // for computing the inverse permutation P where
          // A(inv(P),inv(P)) or P'*A*P is banded
          //         P(i) = c;

          // for computing permutation P where
          // A(P(i),P(j)) or P*A*P' is banded
          P(c) = i;

          // put all unvisited neighbors j of node i on the heap
          s = 0;
          octave_idx_type j1 = cidx[i];
          octave_idx_type j2 = cidx2[i];

          octave_quit ();

          while (j1 < cidx[i+1] || j2 < cidx2[i+1])
            {
              octave_quit ();

              if (j1 == cidx[i+1])
                {
                  octave_idx_type r2 = ridx2[j2++];
                  if (! visit[r2])
                    {
                      // the distance of node j is dist(i)+1
                      w.id = r2;
                      w.deg = D[r2];
                      w.dist = v.dist+1;
                      H_insert (S, s, w);
                      visit[r2] = true;
                    }
                }
              else if (j2 == cidx2[i+1])
                {
                  octave_idx_type r1 = ridx[j1++];
                  if (! visit[r1])
                    {
                      w.id = r1;
                      w.deg = D[r1];
                      w.dist = v.dist+1;
                      H_insert (S, s, w);
                      visit[r1] = true;
                    }
                }
              else
                {
                  octave_idx_type r1 = ridx[j1];
                  octave_idx_type r2 = ridx2[j2];
                  if (r1 <= r2)
                    {
                      if (! visit[r1])
                        {
                          w.id = r1;
                          w.deg = D[r1];
                          w.dist = v.dist+1;
                          H_insert (S, s, w);
                          visit[r1] = true;
                        }
                      j1++;
                      if (r1 == r2)
                        j2++;
                    }
                  else
                    {
                      if (! visit[r2])
                        {
                          w.id = r2;
                          w.deg = D[r2];
                          w.dist = v.dist+1;
                          H_insert (S, s, w);
                          visit[r2] = true;
                        }
                      j2++;
                    }
                }
            }

          // add the neighbors to the queue (sorted by node degree)
          while (! H_empty (S, s))
            {
              octave_quit ();

              // locate a neighbor of i with minimal degree in O(log(N))
              v = H_remove_min (S, s, 1);

              // entered the BFS a new level?
              if (v.dist > level)
                {
                  // adjustment of bandwidth:
                  // "[...] the minimum bandwidth that
                  // can be obtained [...] is the
                  //  maximum number of nodes per level"
                  if (Bsub < level_N)
                    Bsub = level_N;

                  level = v.dist;
                  // v is the first node on the new level
                  level_N = 1;
                }
              else
                {
                  // there is no new level but another node on
                  // this level:
                  level_N++;
                }

              // enqueue v in O(1)
              Q_enq (Q, N, qt, v);
            }

          // synchronize the bandwidth with level_N once again:
          if (Bsub < level_N)
            Bsub = level_N;
        }
      // finish of BFS.  If there are still unvisited nodes in the graph
      // then it is split into CCs.  The computed bandwidth is the maximum
      // of all subgraphs.  Update:
      if (Bsub > B)
        B = Bsub;
    }
  // are there any nodes left?
  while (c+1 < N);

  // compute the reverse-ordering
  s = N / 2 - 1;
  for (octave_idx_type i = 0, j = N - 1; i <= s; i++, j--)
    std::swap (P.elem (i), P.elem (j));

  // increment all indices, since Octave is not C
  return ovl (P+1);
}

OCTAVE_NAMESPACE_END