view liboctave/numeric/CollocWt.cc @ 30564:796f54d4ddbf stable

update Octave Project Developers copyright for the new year In files that have the "Octave Project Developers" copyright notice, update for 2021. In all .txi and .texi files except gpl.txi and gpl.texi in the doc/liboctave and doc/interpreter directories, change the copyright to "Octave Project Developers", the same as used for other source files. Update copyright notices for 2022 (not done since 2019). For gpl.txi and gpl.texi, change the copyright notice to be "Free Software Foundation, Inc." and leave the date at 2007 only because this file only contains the text of the GPL, not anything created by the Octave Project Developers. Add Paul Thomas to contributors.in.
author John W. Eaton <jwe@octave.org>
date Tue, 28 Dec 2021 18:22:40 -0500
parents f3f3e3793fb5
children e88a07dec498
line wrap: on
line source

////////////////////////////////////////////////////////////////////////
//
// Copyright (C) 1993-2022 The Octave Project Developers
//
// See the file COPYRIGHT.md in the top-level directory of this
// distribution or <https://octave.org/copyright/>.
//
// This file is part of Octave.
//
// Octave is free software: you can redistribute it and/or modify it
// under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// Octave is distributed in the hope that it will be useful, but
// WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with Octave; see the file COPYING.  If not, see
// <https://www.gnu.org/licenses/>.
//
////////////////////////////////////////////////////////////////////////

#if defined (HAVE_CONFIG_H)
#  include "config.h"
#endif

#include <cassert>
#include <cmath>

#include <limits>
#include <ostream>

#include "Array.h"
#include "CollocWt.h"
#include "lo-error.h"
#include "lo-mappers.h"

// The following routines jcobi, dif, and dfopr are based on the code
// found in Villadsen, J. and M. L. Michelsen, Solution of Differential
// Equation Models by Polynomial Approximation, Prentice-Hall (1978)
// pages 418-420.
//
// Translated to C++ by jwe.

namespace octave
{
  // Compute the first three derivatives of the node polynomial.
  //
  //                 n0     (alpha,beta)           n1
  //   p  (x)  =  (x)   *  p (x)         *  (1 - x)
  //    nt                   n
  //
  // at the interpolation points.  Each of the parameters n0 and n1
  // may be given the value 0 or 1.  The total number of points
  // nt = n + n0 + n1
  //
  // The values of root must be known before a call to dif is possible.
  // They may be computed using jcobi.

  static void dif (octave_idx_type nt, double *root, double *dif1,
                   double *dif2, double *dif3)
  {
    // Evaluate derivatives of node polynomial using recursion formulas.

    for (octave_idx_type i = 0; i < nt; i++)
      {
        double x = root[i];

        dif1[i] = 1.0;
        dif2[i] = 0.0;
        dif3[i] = 0.0;

        for (octave_idx_type j = 0; j < nt; j++)
          {
            if (j != i)
              {
                double y = x - root[j];

                dif3[i] = y * dif3[i] + 3.0 * dif2[i];
                dif2[i] = y * dif2[i] + 2.0 * dif1[i];
                dif1[i] = y * dif1[i];
              }
          }
      }
  }

  // Compute the zeros of the Jacobi polynomial.
  //
  //    (alpha,beta)
  //   p  (x)
  //    n
  //
  // Use dif to compute the derivatives of the node
  // polynomial
  //
  //                 n0     (alpha,beta)           n1
  //   p  (x)  =  (x)   *  p (x)         *  (1 - x)
  //    nt                   n
  //
  // at the interpolation points.
  //
  // See Villadsen and Michelsen, pages 131-132 and 418.
  //
  // Input parameters:
  //
  //   nd     : the dimension of the vectors dif1, dif2, dif3, and root
  //
  //   n      : the degree of the jacobi polynomial, (i.e., the number
  //            of interior interpolation points)
  //
  //   n0     : determines whether x = 0 is included as an
  //            interpolation point
  //
  //              n0 = 0  ==>  x = 0 is not included
  //              n0 = 1  ==>  x = 0 is included
  //
  //   n1     : determines whether x = 1 is included as an
  //            interpolation point
  //
  //              n1 = 0  ==>  x = 1 is not included
  //              n1 = 1  ==>  x = 1 is included
  //
  //   alpha  : the value of alpha in the description of the jacobi
  //            polynomial
  //
  //   beta   : the value of beta in the description of the jacobi
  //            polynomial
  //
  //   For a more complete explanation of alpha an beta, see Villadsen
  //   and Michelsen, pages 57 to 59.
  //
  // Output parameters:
  //
  //   root   : one dimensional vector containing on exit the
  //            n + n0 + n1 zeros of the node polynomial used in the
  //            interpolation routine
  //
  //   dif1   : one dimensional vector containing the first derivative
  //            of the node polynomial at the zeros
  //
  //   dif2   : one dimensional vector containing the second derivative
  //            of the node polynomial at the zeros
  //
  //   dif3   : one dimensional vector containing the third derivative
  //            of the node polynomial at the zeros

  static bool jcobi (octave_idx_type n, octave_idx_type n0, octave_idx_type n1,
                     double alpha, double beta, double *dif1, double *dif2,
                     double *dif3, double *root)
  {
    assert (n0 == 0 || n0 == 1);
    assert (n1 == 0 || n1 == 1);

    octave_idx_type nt = n + n0 + n1;

    assert (nt >= 1);

    // -- first evaluation of coefficients in recursion formulas.
    // -- recursion coefficients are stored in dif1 and dif2.

    double ab = alpha + beta;
    double ad = beta - alpha;
    double ap = beta * alpha;

    dif1[0] = (ad / (ab + 2.0) + 1.0) / 2.0;
    dif2[0] = 0.0;

    if (n >= 2)
      {
        for (octave_idx_type i = 1; i < n; i++)
          {
            double z1 = i;
            double z = ab + 2 * z1;

            dif1[i] = (ab * ad / z / (z + 2.0) + 1.0) / 2.0;

            if (i == 1)
              dif2[i] = (ab + ap + z1) / z / z / (z + 1.0);
            else
              {
                z *= z;
                double y = z1 * (ab + z1);
                y *= (ap + y);
                dif2[i] = y / z / (z - 1.0);
              }
          }
      }

    // Root determination by Newton method with suppression of previously
    // determined roots.

    double x = 0.0;

    for (octave_idx_type i = 0; i < n; i++)
      {
        bool done = false;

        int k = 0;

        while (! done)
          {
            double xd = 0.0;
            double xn = 1.0;
            double xd1 = 0.0;
            double xn1 = 0.0;

            for (octave_idx_type j = 0; j < n; j++)
              {
                double xp  = (dif1[j] - x) * xn  - dif2[j] * xd;
                double xp1 = (dif1[j] - x) * xn1 - dif2[j] * xd1 - xn;

                xd  = xn;
                xd1 = xn1;
                xn  = xp;
                xn1 = xp1;
              }

            double zc = 1.0;
            double z = xn / xn1;

            if (i != 0)
              {
                for (octave_idx_type j = 1; j <= i; j++)
                  zc -= z / (x - root[j-1]);
              }

            z /= zc;
            x -= z;

            // Famous last words:  100 iterations should be more than
            // enough in all cases.

            if (++k > 100 || math::isnan (z))
              return false;

            if (std::abs (z) <= 100 * std::numeric_limits<double>::epsilon ())
              done = true;
          }

        root[i] = x;
        x += std::sqrt (std::numeric_limits<double>::epsilon ());
      }

    // Add interpolation points at x = 0 and/or x = 1.

    if (n0 != 0)
      {
        for (octave_idx_type i = n; i > 0; i--)
          root[i] = root[i-1];

        root[0] = 0.0;
      }

    if (n1 != 0)
      root[nt-1] = 1.0;

    dif (nt, root, dif1, dif2, dif3);

    return true;
  }

  // Compute derivative weights for orthogonal collocation.
  //
  // See Villadsen and Michelsen, pages 133-134, 419.
  //
  // Input parameters:
  //
  //   nd     : the dimension of the vectors dif1, dif2, dif3, and root
  //
  //   n      : the degree of the jacobi polynomial, (i.e., the number
  //            of interior interpolation points)
  //
  //   n0     : determines whether x = 0 is included as an
  //            interpolation point
  //
  //              n0 = 0  ==>  x = 0 is not included
  //              n0 = 1  ==>  x = 0 is included
  //
  //   n1     : determines whether x = 1 is included as an
  //            interpolation point
  //
  //              n1 = 0  ==>  x = 1 is not included
  //              n1 = 1  ==>  x = 1 is included
  //
  //   i      : the index of the node for which the weights are to be
  //            calculated
  //
  //   id     : indicator
  //
  //              id = 1  ==>  first derivative weights are computed
  //              id = 2  ==>  second derivative weights are computed
  //              id = 3  ==>  gaussian weights are computed (in this
  //                           case, the value of i is irrelevant)
  //
  // Output parameters:
  //
  //   dif1   : one dimensional vector containing the first derivative
  //            of the node polynomial at the zeros
  //
  //   dif2   : one dimensional vector containing the second derivative
  //            of the node polynomial at the zeros
  //
  //   dif3   : one dimensional vector containing the third derivative
  //            of the node polynomial at the zeros
  //
  //   vect   : one dimensional vector of computed weights

  static void dfopr (octave_idx_type n, octave_idx_type n0, octave_idx_type n1,
                     octave_idx_type i, octave_idx_type id, double *dif1,
                     double *dif2, double *dif3, double *root, double *vect)
  {
    assert (n0 == 0 || n0 == 1);
    assert (n1 == 0 || n1 == 1);

    octave_idx_type nt = n + n0 + n1;

    assert (nt >= 1);

    assert (id == 1 || id == 2 || id == 3);

    if (id != 3)
      assert (i >= 0 && i < nt);

    // Evaluate discretization matrices and Gaussian quadrature weights.
    // Quadrature weights are normalized to sum to one.

    if (id != 3)
      {
        for (octave_idx_type j = 0; j < nt; j++)
          {
            if (j == i)
              {
                if (id == 1)
                  vect[i] = dif2[i] / dif1[i] / 2.0;
                else
                  vect[i] = dif3[i] / dif1[i] / 3.0;
              }
            else
              {
                double y = root[i] - root[j];

                vect[j] = dif1[i] / dif1[j] / y;

                if (id == 2)
                  vect[j] = vect[j] * (dif2[i] / dif1[i] - 2.0 / y);
              }
          }
      }
    else
      {
        double y = 0.0;

        for (octave_idx_type j = 0; j < nt; j++)
          {
            double x = root[j];

            double ax = x * (1.0 - x);

            if (n0 == 0)
              ax = ax / x / x;

            if (n1 == 0)
              ax = ax / (1.0 - x) / (1.0 - x);

            vect[j] = ax / (dif1[j] * dif1[j]);

            y += vect[j];
          }

        for (octave_idx_type j = 0; j < nt; j++)
          vect[j] = vect[j] / y;
      }
  }

  // Error handling.

  void CollocWt::error (const char *msg)
  {
    (*current_liboctave_error_handler) ("CollocWt: fatal error '%s'", msg);
  }

  CollocWt& CollocWt::set_left (double val)
  {
    if (val >= m_rb)
      error ("CollocWt: left bound greater than right bound");

    m_lb = val;
    m_initialized = 0;
    return *this;
  }

  CollocWt& CollocWt::set_right (double val)
  {
    if (val <= m_lb)
      error ("CollocWt: right bound less than left bound");

    m_rb = val;
    m_initialized = 0;
    return *this;
  }

  void CollocWt::init (void)
  {
    // Check for possible errors.

    double wid = m_rb - m_lb;
    if (wid <= 0.0)
      {
        error ("CollocWt: width less than or equal to zero");
      }

    octave_idx_type nt = m_n + m_inc_left + m_inc_right;

    if (nt < 0)
      error ("CollocWt: total number of collocation points less than zero");
    else if (nt == 0)
      return;

    Array<double> dif1 (dim_vector (nt, 1));
    double *pdif1 = dif1.fortran_vec ();

    Array<double> dif2 (dim_vector (nt, 1));
    double *pdif2 = dif2.fortran_vec ();

    Array<double> dif3 (dim_vector (nt, 1));
    double *pdif3 = dif3.fortran_vec ();

    Array<double> vect (dim_vector (nt, 1));
    double *pvect = vect.fortran_vec ();

    m_r.resize (nt, 1);
    m_q.resize (nt, 1);
    m_A.resize (nt, nt);
    m_B.resize (nt, nt);

    double *pr = m_r.fortran_vec ();

    // Compute roots.

    if (! jcobi (m_n, m_inc_left, m_inc_right, m_alpha, m_beta, pdif1,
                 pdif2, pdif3, pr))
      error ("jcobi: newton iteration failed");

    octave_idx_type id;

    // First derivative weights.

    id = 1;
    for (octave_idx_type i = 0; i < nt; i++)
      {
        dfopr (m_n, m_inc_left, m_inc_right, i, id, pdif1, pdif2, pdif3,
               pr, pvect);

        for (octave_idx_type j = 0; j < nt; j++)
          m_A(i, j) = vect(j);
      }

    // Second derivative weights.

    id = 2;
    for (octave_idx_type i = 0; i < nt; i++)
      {
        dfopr (m_n, m_inc_left, m_inc_right, i, id, pdif1, pdif2, pdif3,
               pr, pvect);

        for (octave_idx_type j = 0; j < nt; j++)
          m_B(i, j) = vect(j);
      }

    // Gaussian quadrature weights.

    id = 3;
    double *pq = m_q.fortran_vec ();
    dfopr (m_n, m_inc_left, m_inc_right, id, id, pdif1, pdif2, pdif3, pr, pq);

    m_initialized = 1;
  }

  std::ostream& operator << (std::ostream& os, const CollocWt& a)
  {
    if (a.left_included ())
      os << "left  boundary is included\n";
    else
      os << "left  boundary is not included\n";

    if (a.right_included ())
      os << "right boundary is included\n";
    else
      os << "right boundary is not included\n";

    os << "\n";

    os << a.m_alpha << ' ' << a.m_beta << "\n\n"
       << a.m_r << "\n\n"
       << a.m_q << "\n\n"
       << a.m_A << "\n"
       << a.m_B << "\n";

    return os;
  }
}